Advanced Power Control Technique for Hybrid Wind-Solar Power GenerationSystem Used in Standalone Application

Authors

  • P. R. Syam Prasanth Assistant Professor, Department of EEE, Maria College of Engineering and Technology, Attoor, Tamilnadu, India
  • J.L. Sunil Assistant Professor, Department of EEE, Maria College of Engineering and Technology, Attoor, Tamilnadu, India

DOI:

https://doi.org/10.51983/ajes-2014.3.1.1916

Keywords:

Dump load, dump power control, low cost, standalone hybrid power generation system, storage battery

Abstract

This paper proposes a unique standalone hybrid power generation system, applying advanced power control tech- niques, fed by four power sources: wind power, solar power, storage battery, and diesel engine generator, and which is not connected to a commercial power system. Considerable effort was put into the development of active-reactive power and dump power controls. The result of laboratory experiments revealed that amplitudes and phases of ac output voltage were well regulated in the proposed hybrid system. Different power sources can be interconnected anywhere on the same power line, leading to flex- ible system expansion. It is anticipated that this hybrid power generation system, into which natural energy is incorporated, will contribute to global environmental protection on isolated islands and in rural locations without any dependence on commercial power systems.

References

S.-K. Kim, J.-H. Jeon, C.-H. Cho, J.-B. Ahn, and S.-H. Kwon, “Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1677–1688, Apr. 2008.

K. Kobayashi, H. Matsuo, and Y. Sekine, “An excellent operating point tracker of the solar-cell power supply system,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 495–499, Apr. 2006.

K. Kobayashi, H. Matsuo, and Y. Sekine, “Novel solar-cell power supply system using a multiple-input dc–dc converter,” IEEE Trans. Ind. Elec- tron., vol. 53, no. 1, pp. 281–286, Feb. 2006.

A. I. Bratcu, I. Munteau, S. Bacha, D. Picault, and B. Raison, “Cascaded dc–dc converter photovoltaic systems: Power optimization issues,” IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 403–411, Feb. 2011.

W. Li, G. Joos, and J. Belanger, “Real-time simulation of a wind turbine generator coupled with a battery supercapacitor energy storage system,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1137–1145, Apr. 2010.

F. Valenciaga and P. F. Puleston, “Supervisor control for a standalone hybrid generation system using wind and photovoltaic energy,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 398–405, Jun. 2005.

S. Meenakshi, K. Rajambal, C. Chellamuthu, and S. Elangovan, “Intelli- gent controller for a stand-alone hybrid generation system,” in Proc. IEEE Power India Conf., New Delhi, India, 2006.

R. Belfkira, O. Hajji, C. Nichita, and G. Barakat, “Optimal sizing of stand-alone hybrid wind/pv system with battery storage,” in Proc. Power Electron. Appl. Eur. Conf., Sep. 2007, pp. 1–10.

S. Wang and Z. Qi, “Coordination control of energy management for stand-alone wind/pv hybrid systems,” in Proc. IEEE ICIEA, May 2009, pp. 3240–3244.

C. Liu, K. T. Chau, and X. Zhang, “An efficient wind-photovoltaic hy- brid generation system using doubly excited permanent- magnet brush-less machine,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 831–839, Mar. 2010.

F. Bonanno, A. Consoli, S. Lombardo, and A. Raciti, “A logistical model for performance evaluations of hybrid generation systems,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1397–1403, Nov./Dec. 1998.

M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez, and L. A. Alvarado, “An approach to evaluate the general performance of stand-alone wind/photovoltaic generating systems,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 433–439, Dec. 2000.

J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, M. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: A survey,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Jun. 2006.

S. Jiao, G. Hunter, V. Ramsden, and D. Patterson, “Control system design for a 20 kW wind turbine generator with a boost converter and battery bank load,” in Proc. PESC, Sep./Oct. 2001, pp. 2203– 2206.

S. Tanezaki, T. Matsushima, and S. Muroyama, “Stand-alone hybrid power supply system composed of wind turbines and photovoltaicmodules for powering radio relay stations,” in Proc. IEEE INTELEC, Oct. 2003, pp. 457–462. [16] A. M. O. Haruni, A. Gargoom, M. E. Haque, and M. Negnevitsky, “Dy- namic operation and control of a hybrid wind-diesel stand alone power systems,” in Proc. IEEE APEC, Feb. 2010, pp. 162– 169.

D. B. Nelson, M. H. Nehrir, and C. Wang, “Unit sizing of standalone hybrid wind/pv/fuel cell power generation systems,” in Proc. IEEE Power Eng. General Soc. Meeting, Jun. 2005, vol. 3, pp. 2116–2122.

M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel connected inverters in standalone ac supply systems,” IEEE Trans. Ind. Appl., vol. 29, no. 1, pp. 136–143, Jan./Feb. 1993.

J. M. Guerrero, J. Matas, L. G. de Vicuna, M. Castilla, and J. Miret, “Wireless-control strategy for parallel operation of distributed generation inverters,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1461–1470, Oct. 2006.

Downloads

Published

05-05-2014

How to Cite

Syam Prasanth, P. R., & J.L. Sunil. (2014). Advanced Power Control Technique for Hybrid Wind-Solar Power GenerationSystem Used in Standalone Application. Asian Journal of Electrical Sciences, 3(1), 23–34. https://doi.org/10.51983/ajes-2014.3.1.1916