Asian Journal of Electrical Sciences
ISSN: 2249-6297 (P); 2583-7923 (E)
Vol.14 No.2, 2025, pp.53-66

© Centre for Research and Innovation
www.crijournals.org
DOIL: https://doi.org/10.70112/ajes-2025.14.2.4291

Relational Database Normalization vs Denormalization:
A Performance Perceptive

Wumi Ajayi! @, Kikelomo Okesola?

, Deogratias Ntezirayao®

, Francis Odo* ®and

Alfred Udosen Akpan®”
1&2Department of Software Engineering, *Department of Computer Science, School of Computing, Babcock University,
Ilishan-Remo, Nigeria
3Department of Computer Science, Adventist University of Central Africa (AUCA), Kigali, Rwanda
4Cisco Systems West Tower, Lagos, Nigeria
E-mail: ajayiw@babcock.edu.ng, okesolak@babcock.edu.ng, deogratias.nteziryayo@auca.ac.rw, fraodo@cisco.com

*Corresponding Author: udosena@babcock.edu.ng
(Received 16 August 2025; Revised 8 October 2025; Accepted 31 October 2025; Available online 8 December 2025)

Abstract - Relational database architecture has a significant
impact on how data are managed, retrieved, and stored,
making it essential for effective data management. Two key
design strategies that influence the structure of a relational
database are normalization and denormalization.
Normalization organizes data into structured tables to
eliminate redundancy and ensure data integrity. Although this
approach simplifies updates, it may lead to performance
degradation due to complex queries and frequent join
operations. In contrast, denormalization improves
performance by reducing or eliminating join operations, at the
cost of increased data redundancy and storage requirements.
This paper investigates the impact of these design strategies on
database performance, with a focus on improving query
efficiency by minimizing the number of joins required for data
retrieval. Using SQL Server as the chosen RDBMS and
applying it to a School Grades Management System, this study
demonstrates practical implementations of normalized and
denormalized schemas through structured queries.
Furthermore, by presenting performance benchmarks
supported by indexing optimization strategies, this work aims
to guide database designers in selecting an appropriate design
strategy that achieves an optimal balance between data
integrity and system performance.

Keywords: Relational Database Design, Normalization,
Denormalization, Query Performance, SQL Server

L. INTRODUCTION

Relational databases form the foundation of many
information systems and are the most commonly used
database type by businesses worldwide. Relational database
normalization is considered one of the most effective
approaches for creating large-scale and high-quality
database systems [1]. To reduce data redundancy and
improve data consistency by minimizing anomalies,
normalization was introduced to organize data into
“relations,” or tables, based on predefined rules. Beyond
improving data quality, it has also been argued that
normalization enhances performance and maintainability

(2].

However, in some cases, normalization alone is insufficient;
therefore, developers adopt database denormalization to
further improve database performance. Denormalization is a

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

53

technique used in database design to reduce query execution
time by introducing duplicate data into tables [3]. It is
achieved by combining two or more normalized tables into
a single table. As a result, join operations are reduced, and
query execution becomes faster because fewer tables need
to be accessed. However, if not managed properly,
denormalization can lead to data redundancy and potential
data inconsistency [4]. The decision between normalization
and denormalization is one of the primary design choices
that developers must make when defining a database
structure. Both normalization and denormalization are
techniques related to the organization and representation of
data [5].

As organizations expand and increasingly automate their
operations, the volume of data collected and processed
grows significantly. Consequently, efficient database
performance is essential to ensure fast data retrieval,
seamless user experiences, and reliable backend operations
[6]. Database performance optimization plays a critical role
in ensuring smooth application delivery. Poorly designed
queries, missing indexes, and capacity limitations can result
in performance bottlenecks and system failures [7]. One
widely used approach for improving database performance
is denormalization. Denormalization involves adding
redundant rows or columns to a normalized database
schema to enhance read performance [8].

Conversely, normalization remains a fundamental aspect of
data tuning, as it focuses on structuring the database to
improve data consistency and minimize data duplication. By
reducing redundancy, normalization helps improve query
accuracy and reduce storage costs [9]. Database
management systems play a critical role in data processing
for decision-making, and SQL Server is a widely used
relational database management system due to its scalability
and feature-rich environment [10]. The primary objective of
this study is to identify, analyze, and apply normalization
and denormalization techniques to improve query efficiency
in a school database, specifically for a student grades
management system. Indexing is adopted as a
complementary optimization strategy commonly used in
relational databases.

AJES Vol.14 No.2 July-December 2025

http://orcid.org/0000-0003-3362-4082
http://orcid.org/0000-0003-0944-1497
http://orcid.org/0009-0002-9222-9904
http://orcid.org/0009-0003-6301-4426
http://orcid.org/0000-0003-1454-0254
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wumi Ajayi, Kikelomo Okesola, Deogratias Ntezirayao, Francis Odo and Alfred Udosen Akpan

II. LITERATURE REVIEW
A. Normalization

Applying the normalization process and understanding the
rules defined by normal forms are essential when designing
a relational database. Normalization is the process of
decomposing a dataset into smaller entities with multiple
attributes by examining their relationships in an organized
and conflict-free manner [11]. Relational databases provide
a reliable and scalable approach to storing and managing
data, making them a fundamental component of modern
software applications. A well-designed database schema
improves application performance and scalability while also
simplifying maintenance and enhancing overall efficiency
[12]. The primary objective of effective database design in
relational data models is to create an accurate representation
of data, its relationships, and its constraints. To achieve this
objective, database normalization-an established discipline
since the publication of E. F. Codd’s seminal work on
normal forms in 1970-organizes data by eliminating
anomalies, inconsistent dependencies, and redundancies
[13]. The purpose of normalization is to structure data in a
way that removes redundant information and ensures data

integrity. In this study, normalization principles were
applied to reduce data duplication by dividing data into
smaller, conceptually related tables. This approach not only
improved data consistency but also streamlined data
management and reduced storage requirements [14]. In
database systems, data normalization applies a set of formal
rules to produce standardized and well-structured data. This
process involves removing unstructured and unnecessary
data and ensuring consistent data representation across all
records and fields. Additionally, normalization helps
prevent common database anomalies, including insertion,
update, and deletion anomalies [15]. According to [16],
multiple normal forms exist within the normalization
process, each defined by specific rules and constraints. The
most commonly used normal forms include:

1. First Normal Form (INF): This is the initial stage of
database normalization. A table is considered to be in
INF if it satisfies the following conditions:

a. All attribute values are atomic (indivisible).

b. There are no repeating groups or arrays.
Table I shows an example of a table that violates 1NF,
storing the information about students and their courses in
the same table as shown below.

TABLE I A RELATION THAT VIOLATES THE INF [16]

Student_ID | Student_Name Courses
1 Alice Math, Physics, Chemistry
2 Bob Biology, History
3 Carol Math, History

To convert this table into INF, the “Courses” column is
decomposed into separate rows for each course, as shown in
Table I1.

The objective of the first rule of normalization, known as
First Normal Form (INF), is to facilitate efficient data
searching within a table [15].

TABLE 11 ANORMALIZED RELATION IN INF [16]

Student_ID | Student Name | Courses
1 Alice Math
1 Alice Physics
1 Alice Chemistry
2 Bob Biology
2 Bob History
3 Carol Math
3 Carol History

2. Second Normal Form (2NF): Building upon the
framework of INF, Second Normal Form (2NF)
introduces an additional constraint concerning the
relationship between a table’s primary key and its non-
key attributes [16]. A table must satisfy the following
conditions to achieve 2NF:

a. The table must already be in INF.

AJES Vol.14 No.2 July-December 2025

54

b.Every non-key attribute must be fully functionally
dependent on the entire primary key. This means that
non-key attributes should depend on the complete
primary key, rather than on only a subset of it.

For example, the unnormalized relation (shown above) is
decomposed into two relations (shown below) by ensuring
that each non-prime attribute is fully functionally dependent
on the primary key, as illustrated in Table III.

Relational Database Normalization vs Denormalization: A Performance Perceptive

TABLE III SECOND NORMAL FORM ILLUSTRATED [4]

SSN | PNUMBER | PNAME | HOURS

100 1000 Hadoop 50

220 1200 CRM 200

280 1000 Hadoop 40

300 1500 Java 100

120 1000 Hadoop 120

BZNF
SSN PNUMBER | HOURS
PNUMBER | PNAME 100 1000 >0
220 1200 200
1000 Hadoop

1200 CRM 280 1000 40
1500 Java 300 1500 100
120 1000 120

3. Third Normal Form (3NF): According to [16], the next
stage in the database normalization process is Third
Normal Form (3NF). A table must satisfy the following
conditions to achieve 3NF:
a. The table must already be in 2NF.
b. No transitive dependencies should exist; that is, non-
key attributes must not depend on other non-key

In other words, 3NF ensures that data are structured to
prevent the redundant storage of non-key attribute
information. For example, the unnormalized relation
(shown above) is decomposed into two relations (shown
below) by ensuring that no non-prime attribute is
transitively dependent on the primary key.

attributes.
TABLE IV THIRD NORMAL FORM ILLUSTRATED [15]
Student_ID Student Name | Subject ID | Subject | Address
IDT1SENGO1 Alex 15C511 SQL Goa
IDT1SENGO02 Barry 15C513 JAVA | Bengaluru
IDT1SENGO3 Clair 15C512 C++ Delhi
IDT1SENG04 David 15C513 JAVA Kochi
I o
Student_ID | Student_Name | Subject ID | Address Subject ID | Subject
IDTISENGOI Alex 15C511 Goa 15C311 SQL
IDT1SENG02 Barry 15C513 Bengaluru 15C513 JAVA
IDT1SENGO3 Clair 15C512 Delhi 15C512 C++
IDTISENG04 David 15C513 Kochi 15C513 JAVA

4. Boyce—Codd Normal Form (BCNF): According to [16],
building upon the principles of INF, 2NF, and 3NF,
Boyce—Codd Normal Form (BCNF) represents a higher
level of normalization. To satisfy BCNF, a table must meet
the following conditions:
a. The table must already be in 3NF.
b.Every determinant must be a superkey, where a
superkey is any set of attributes that uniquely identifies
a tuple.

In other words, BCNF ensures that all non-key attributes are
fully functionally dependent on the entire primary key or on
a superkey, thereby eliminating partial dependencies. BCNF
is an enhanced version of 3NF and was introduced by
Edgar F. Codd and Raymond F. Boyce to address certain

55

anomalies that 3NF could not resolve [15]. As noted in [17],
a lossless decomposition of a relational database schema
into BCNF may not always exist and depends on the given
set of functional dependencies. However, the authors argue
that more efficient methods are required to achieve BCNF
in practice, particularly through the use of automated design
tools. According to [19], BCNF enables users to
automatically generate schema transformation scripts. For
example, as illustrated in Figure 5.

a. One student may register for multiple subjects.

b. A single subject may be taught by different professors.

c. For each subject, a professor is assigned to a student;
however, the table does not satisfy BCNF.

AJES Vol.14 No.2 July-December 2025

Wumi Ajayi, Kikelomo Okesola, Deogratias Ntezirayao, Francis Odo and Alfred Udosen Akpan

TABLE V TABLE TO BE CONVERTED INTO BCNF [15]
Student_ID | Subject Professor

IDT1SENGO1 SQL Prof. Mushra
IDT1SENGO02 | JAVA Prof. Anand
IDT1SENGO02 C++ Prof. Kanthi
IDTISENGO03 | JAVA Prof. Anand
IDT1SENG04 | DBMS | Prof. Lokesh

a. In this case, Student ID and Subject together form the c. Although Subject is a prime attribute, Professor is a
primary key, which means that the Subject attribute is a non-prime attribute; this violates the requirements of
prime attribute. BCNF.

b.However, there exists an additional functional d.To satisfy BCNF, the table is decomposed into two
dependency: Professor — Subject. separate tables. One table retains the existing Student

ID, while a second table is created to include the
Professor ID attribute.

TABLE VI SHOWS THE BCNF NORMALIZED TABLE
Student_ID | Subject | Professor_ID

IDT1SENGO1 SQL 1DTPFO1
IDT1SENGO02 | JAVA 1DTPF02
IDT1SENGO02 C++ 1DTPFO03

IDTISENGO03 | JAVA 1DTPF02
IDTISENGO04 | DBMS IDTPF04

TABLE VII NORMALIZED INTO BCNF [15]
Professor_ID Professor Subject

IDTPFO1 Prof. Mushra SQL
IDTPF02 Prof. Anand JAVA
IDTPFO03 Prof. Kanthi C++
IDTPF02 Prof. Anand JAVA
1DTPF04 Prof. Lokesh | DBMS

In the second table, the columns Professor ID, Professor, 6. Fifth Normal Form (5NF): Fifth Normal Form (5NF),

and Subject are included. This table now satisfies the also known as Project-Join Normal Form (PJ/NF), is a

requirements of BCNF. higher level of database normalization that addresses join
dependencies. By achieving 5NF, tables are structured to

5. Fourth Normal Form (4NF): According to [16], Fourth minimize the need for complex joins in queries. A table

Normal Form (4NF) extends the concepts of INF, 2NF, must satisfy the following conditions to attain SNF:

3NF, and BCNF. A table must satisfy the following

conditions to achieve 4NF: a. The table must already be in 4NF.
a. The table must already be in BCNF. b. The table must not rely on decomposing and joining
b. The table must not contain any non-trivial multi-valued multiple tables to access data; this condition is referred
dependencies among non-key attributes.In other words, to as a join dependency. In other words, SNF resolves
4ANF ensures that no sets of non-key attributes exhibit situations where a relation cannot be reconstructed
multi-valued dependencies or are functionally dependent without joining multiple tables.

on the primary key. In Figure 8, the unnormalized

relation (shown above) is decomposed into two relations Thus, SNF aims to eliminate the need to join tables to

(shown below) by ensuring that, for every non-trivial retrieve information [16]. For example, consider a library

multi-valued dependency X - Y, X is a superkey. database that tracks information about books, authors, and
publishers, as illustrated in Figures 9-12 below.

AJES Vol.14 No.2 July-December 2025 56

Relational Database Normalization vs Denormalization: A Performance Perceptive

TABLE VIII FOURTH NORMAL FORM ILLUSTRATED [4]

COURSE INSTRUCTOR BOOK
Database Management Baesens Database cookbook
Database Management Lemahieu Database cookbook
Database Management Baesens Database for dummies
Database Management Lemahieu Database for dummies

COURSE INSTRUCTOR
Database Management Baesens
Database Management Lemahieu

ﬂ 4ANF

COURSE

BOOK

Database Management

Database cookbook

Database Management

Database for dummies

TABLE IX UNNORMALIZED BOOKS TABLE FOR 5NF

Book_ID Title Author_ID | Publisher_ID
1 “Book 17 1 1
2 “Book 2” 2 2
3 “Book 3” 3 3
TABLE X UNNORMALIZED AUTHORS TABLE FOR 5NF
Author_ID | Author_Name
1 “Author A”
2 “Author B”
3 “Author C”

TABLE XI UNNORMALIZED PUBLISHERS TABLE FOR 5NF

Publisher_ID | Publisher_Name
1 “Publisher X”
2 “Publisher Y”
3 “Publisher Z”

TABLE XII TABLE BOOK INFORMATION NORMALIZED FOR 5NF [16]

Book ID Title Author_Name | Publisher Name
1 “Book 17 “Author A” “Publisher X”
2 “Book 2” “Author B” “Publisher Y”
3 “Book 3” “Author C” “Publisher Z”

TABLE XIII SUMMARY OF THE FIVE NORMAL FORMS RULES [20]

Normal Form

Rule

5% Normal Form

No join dependencies

4t Normal Form

No multivalued dependencies

BCNF

Left hand side of the fucntional dependency is a superkey

3rd Normal Form

No transitive dependencies

27 Normal Form

No partial dependencies

15t Normal Form

No multivalued or composite attributes

57

AJES Vol.14 No.2 July-December 2025

Wumi Ajayi, Kikelomo Okesola, Deogratias Ntezirayao, Francis Odo and Alfred Udosen Akpan

To achieve 5NF, a new table can be created to eliminate the
need for joins while storing all relevant information. In this
5NF structure, information from the Publishers, Books, and
Authors tables has been merged into a single table called
Book Information. Since all relevant data are now contained
within one table, join operations are no longer required to

retrieve detailed book information. Table XIII summarizes
the five normal form rules discussed above. Table XIV

concludes this section by summarizing the various
normalization steps and the types of dependencies
considered.

TABLE XIV OVERVIEW OF NORMALIZATION STEPS AND DEPENDENCY [4]

dependency

Normal .
Form Type of dependency Description
INF Full functional A functional dependency X — Y is a full functional dependency of any attribute type A

from X means that the dependency does not hold anymore

Transitive funcional
dependency

A functional dependency X — Y in a elation R is a transiive dependency if there is a set
3NF of atttribute ypes Z that is neither a canidate key nor a subset
of any key of R, both X — Z and Z — Y hold.

BCNF Trivial funcional

A functional dependency X — Y is called trivial if Y is a subset of X

dependency
ANF Multivariate funcional A dependence X — — Y is multi-valued if and only if each X value exactly deternines
dependency a set of Y values, indepedently of the other attribute types.

B. Denormalization

The first concept that comes to mind when discussing
databases is a location where information is organized to
facilitate efficient management, access, and manipulation. A
database consists of multiple relations that store information
about one or more entities, and relationships are established
when data are distributed across several tables; this type of
database is known as a relational database [21].

However, this structure can make it more challenging to
retrieve useful information. Additionally, identifying the
logical sequence of tables that must be joined to consolidate
data from different parts of the database can be laborious,
particularly for large databases that require numerous
permutations of distinct data items. A more significant
limitation is that many data exploration or analysis tasks
require the database administrator to create denormalized
tables in advance for end users who do not have direct
access [22].

To facilitate data access and analysis, denormalization is the
process of merging data from multiple sources or tables into
a single table. Denormalization may involve combining
tables, adding redundant data, or duplicating columns to
improve efficiency and streamline analytical processes.
Denormalization is particularly useful when fast data access
and system performance optimization are required [5].

According to [14], by reducing the need for complex joins,
denormalization techniques improve query performance.
The author further noted that adding redundant data or
duplicating specific columns can accelerate query execution
in certain scenarios, thereby improving response time,
reducing computational overhead, and minimizing the
number of required tables joins. Furthermore, [21]
confirmed that while database normalization is a well-
studied topic, the literature on denormalization is limited;
therefore, a related work section is not included.

AJES Vol.14 No.2 July-December 2025

C. Advantages and Disadvantages of Normalization

According to [2], the three main benefits of database
normalization are data quality enhancement, maintainability,
and performance. These are broadly consistent with the
benefits presented by [5], which include flexible data
organization, minimized data duplication, and facilitated
processes for updating and maintaining data. As the
normalization hierarchy advances, as shown in Figure 13,
reducing data redundancy is associated with improved data
quality. Enhanced maintainability is evident because,
compared to highly normalized tables, weakly normalized
or unnormalized tables contain more attributes per table,
making data retrieval and the implementation of new rules
more difficult. Finally, normalization has been shown to
improve operational performance. However, [5] also
highlighted certain drawbacks of normalization, including
the need for additional data merging operations and a
potential decrease in query performance.

D. Advantages and Disadvantages of Denormalization
According to [5], there are three
denormalization, which include:

1. A denormalized data schema enables faster information
retrieval.

2. A denormalized data schema reduces the number of data
merging operations in queries, potentially improving
system performance.

3.Denormalization streamlines query execution, since the
data is already consolidated in a single collection and
information retrieval does not require complex data
merging operations.

advantages of

However, [5] also identified four drawbacks of

denormalization:

1. Data duplication: The same data may be repeated across
multiple documents due to denormalization, leading to
increased storage requirements.

Relational Database Normalization vs Denormalization: A Performance Perceptive

2. Larger collection sizes: Denormalization can result in
larger collection sizes, particularly for high-volume
datasets, which may negatively affect system
performance.

3. Difficulty in updating and maintaining data: Because
data may be distributed across multiple documents,
updating and maintaining a denormalized schema can be
more challenging and labour-intensive.

4. Possible decrease in query execution performance:
Denormalization can sometimes reduce query
performance because data may be spread across various
documents, requiring additional data merging operations
to retrieve all relevant information.

A comparative analysis of the advantages and disadvantages
of normalization and denormalization is presented in Table
XV, as shown below:

TABLE XV NORMALIZATION AND DENORMALIZATION COMPARATIVE ANALYSIS TABLE FOR
ADVANTAGES (INDICATED BY THE SIGN +) AND DISADVANTAGES (INDICATED BY THE SIGN -)

Aspect Comparison

Denormalized Data Schema

Normalized Data Schema

Flexible data organization +
Minimization of data duplication +
Facilitate the processes of updating and maintaining data. +

Additional data merging operations

Possible decrease in query performance

Fast retrieval of information

Reduces the number of data merging operations in queries

Simplifies the process of executing queries

Data duplication

Increased collection sizes

Difficulty in updating and maintaining data

Potential performance reduction in query execution

In light of this, this study demonstrates that when choosing
between denormalized and normalized data schemas in
MongoDB or other databases, it is essential to carefully
consider the application’s requirements and select the
strategy that best meets the project’s performance objectives
while also addressing the needs of database administrators
and developers.

E. Strategies for Improving the Database Performance

For effective data management and retrieval, database
performance is critical, particularly in environments that use
Structured Query Language (SQL) Server. Database
performance directly affects user satisfaction, overall
productivity, and application responsiveness, and supporting
essential business processes requires a well-optimized
database capable of handling large transaction volumes and
providing fast query responses [10]. Since indexes are the
most commonly used technique for accelerating query
response, their creation is crucial. By implementing
effective database optimization techniques, high
performance of databases can be maintained. Indexing is
one of the most important strategies for ensuring that
relational databases operate at optimal levels. Indexing
solutions are essential for addressing poor database
performance and enhancing database performance
optimization [22].

According to [21], an index is a data structure that speeds
up data retrieval operations in a database table at the cost of
additional writes and storage space required for index

59

maintenance. By using indexes, data can be located quickly
without scanning all rows of a table for each access. One or
more columns from a database table can be used to create an
index, enabling efficient access and fast random lookups.
Furthermore, [23] confirmed that indexing is one of the
most effective methods for improving query performance,
as it reduces the time required to locate and retrieve data in
a database. Although relational databases make extensive
use of indexing, a comprehensive understanding of how
different indexing techniques perform under various
contexts and query types is still lacking.

III. METHODOLOGY

A study by [2], with a 75.2% popularity score, shows that
the relational model remains the most widely used Database
Management System (DBMS). The top four DBMSs are
Oracle, MySQL, MS SQL Server, and PostgreSQL. The
relational model and SQL query language have gained
popularity and are widely adopted in corporate
environments due to their ease of use [21]. It is noteworthy
that, as this study focuses on relational databases, MS SQL
Server, using the “Display Estimated Execution Plan” and
“Include Client Statistics” options, was selected as the tool
for analyzing the comparative performance between
normalization and denormalization. A proposed Student
Grades Management System from the Adventist University
of Central Africa (AUCA), located in Kigali, Rwanda, was
selected and adapted as a sample for this study. The
database stores students’ grades and is used to generate

AJES Vol.14 No.2 July-December 2025

Wumi Ajayi, Kikelomo Okesola, Deogratias Ntezirayao, Francis Odo and Alfred Udosen Akpan

transcripts. The main table in the database is Grades, which
contains more than six hundred thousand records. The
current sample includes 10 base relations. Note that a table

WOHLEXPRE. olDB - db

T STUDENT
BASEOFADM - T GRADES
DoR ;:Epﬁ\:‘.;;u;l b
DORMVILLAG bicapplad
SCORE
== FACULTYCOC
~UILT SECTION
FACLULTYBAIN iy
MAR_STATUS (e STLIDMLIA
I TERM L
' MATCODE
L, TRANSFER
LAE
SEC_PRCMT
SEX
STUDMAM T Nrﬂ"l' -
=2 ¥ NATCOD
7 STUDNUM =yl - L2,8
3 NATIOMNALTY
EMPLOWED!
I
T FACULTY
&= ¥ FACULTYCOD T BASEAD
FHLT B 7 BASEQFADM
el BASENAME
Mumeso

is referred to as either 7 TABLE or TABLE interchangeably,
as one is a copy of the other. Figure 14 illustrates the
database for the Grades Management System.

oeos rosaiprn. saoos oagen = IR

: T MMML
T COURSE FACOPT ENG
¥ COURSECODE =H— FACOPT FRN
CORNAME FR FACULTYCOD
CORMNANE EM
; E= T MAIMINCODE
CREDITS i
MAIMIN_ENG
THECDRY
PRACTICAL e
o v MAJOR
repdaced
T TERM
ACAD YR
TERM

TERMDESC
MNIFMERD
CREDITS
o
EXP_TERM
GEN_ED
T REL ;
T RELCODE
RELIGIIM
PRACTICAL
THEO®Y

Fig.1 School Database Diagram - Grades Management System

According to [22], the two most commonly used types of
database indexes are:

1. Clustered indexes: The primary key is used to organize
the data in the table using clustered indexes, which are
unique to each table. When the primary key is defined,
the clustered index is automatically created.

2. Non-clustered indexes: In a non-clustered index
structure, the index defines the logical order of the data
even when the data is stored in an arbitrary sequence
[25]. Non-clustered indexes are commonly used with
JOIN, WHERE, and ORDER BY clauses to optimize
column retrieval. These indexes are suitable for tables
with frequently changing values. When the CREATE
INDEX command is executed, Microsoft SQL Server
automatically generates non-clustered indexes.

Figure 1 illustrates how SQL queries utilize indexes. In this
study, non-clustered indexes will primarily be applied to
one or a group of tables where performance improvement is
required.

IV. DATA ANALYSIS AND DISCUSSION

From the normalized database sample, it is necessary to
compare the performance of the normalization technique
with that of denormalization. Figure 2 shows a query that
retrieves the list of students from the Department of
Information Technology who have completed their studies
across the five normalized and joined tables. The query
calculates the total number of credits and the cumulative
mean. Its performance is first evaluated, then improved
using indexes, and finally measured again to assess the
effect of the added indexes.

100 %
& Results @8 Messages

© Query executed successfully.

~ISELECT TOP (1€@) PERCENT S.STUDNUM, S.STUDNAM, SUM(C.CREDITS) AS TotalCredits,
ROUND(SUM(C.CREDITS * G.SCORE) / SUM(C.CREDITS), 2) AS WeightedAverage FROM
dbo.GRADES AS G ON S.STUDNUM = G.STUDNUM INNER JOTIN
dbo.COURSE AS C ON G.COURSECODE = C.COURSECODE INNER JOIN
dbo.MMCL ON C.COURSECODE = dbo.MMCL.COURSECODE INNER JOIN
dbo.MMML ON dbo.MMCL.MAJMINCODE =
WHERE (G.SCORE >= 18) AND (dbo.MMCL.NO_CREDIT <> 1) AND (dbo.MMCL.GEN_ED <> 1
dbo.MMCL.GEN_ED = 1)
GROUP BY S.STUDNUM. S.STUDNAM, S.FACULTYCOD
HAVING (S.FACULTYCOD = 16) AND (SUM(C.CREDITS)
ORDER BY S.STUDNUM

>= 136)

-4

STUDNUM STUDNAM TotalCredits WeightedAverage
202416 BU202416A 138 1462
202556 BU202556A 136 1457
203436 DU203436A 136 15.95
204236 BU204236A 136 158
204976 BUZ04976A 141 1281
206676 BU206676A 137 13.82
207096 BU207096A 137 1441
207196 BU207196A 139 1263
207256 BU207256A 140 14.96
208916 BU208916A 139 13863
209696 DU209696A 144 14
200716 BU209716A 140 1337
210756 BUZ10756A 140 14.38
211056 BU211056A 144

14.03

dbo.MMML .MAJMINCODE AND S.FACULTYCOD =

dbo.STUDENT AS S INNER JOIN

dbo .MMML . FACULTYCOD
OR

@ DEOS-PC\SQLEXPRESS (16.0 RTM) | DEOS-PC\User (167) ' SchoolDB = 00:00:01

1.238 rows

} 4k

v

AJES Vol.14 No.2 July-December 2025

Fig.2 A Query that Retrieves the List of Completed Students from IT Department
Presented for Normalization Process Evaluation

60

Relational Database Normalization vs Denormalization: A Performance Perceptive

The query in Figure 16 demonstrates the use of JOIN on
five related tables, along with other SQL clauses such as
WHERE, GROUP BY, HAVING, and ORDER BY. The
query outputs the student matriculation number, name, the

total number of credits completed, and the mean score over
20 for 1,238 graduates. Next, the execution time of the
query is evaluated, as shown in Figure 3.

ROUND(SUM(C.CREDITS * G.SCORE) / SUM(C.CREDITS).
FROM dbo.STUDENT AS S INNER JOIN
dbo .GRADES AS G ON S.STUDNUM = G.STUDNUM INNER JOIN
dbo.COURSE AS C ON G.COURSECODE =
dbo .MMCL ON C.COURSECODE =
dbo.MMML ON dbo.MMCL.MAJMINCODE =

dbo .MMCL.GEN_ED = 1)
GROUP BY S.STUDNUM, S.STUDNAM, S.FACULTYCOD
HAVING (S.FACULTYCOD = 16) AND (SUM(C.CREDITS) >= 136)
ORDER BY S.STUDNUM
-4
EE Results & Messages & Client Statisties.

100 %

Trial 1 Average
Number of SELECT statements 1 > 1.0000
Rows returned by SELECT statements 1238 + 1238.0000
Number of transactions o ~ 0.0000
Network Statistics
Number of sever roundtrips 1 > 1.0000
TDS packets sent from client 1 > 1.0000
TDS packels received fom server 20 > 20.0000
Rytes sent from client 1510 » 15100000
Bytes received from server 79742 > 79742.0000
Time Statistics
Giient processing time 1 > 11.0000
Total execution time 702 - 792.0000
Watt time on server replies 781 > /81.0000

9 Query executed successfully.

~ISELECT TOP (10@) PERCENT S.STUDNUM, S.STUDNAM, SUM(C.CREDITS) AS TotalCredits,
2) AS WeightedAverage

C.COURSECODE INNER JOIN
dbo.MMCL . COURSECODE INNER JOIN
dbo . MMML .MAJMINCODE AND S.FACULTYCOD =
WHERE (G.SCORE >= 1@) AND (dbo.MMCL.NO_CREDIT <> 1) AND (dbo.MMCL.GEN_ED

@ DEOS-PC\SQLEXPRESS (16.0 RTM) DEOS-PC\User (62) SchoolDB_ 00:00:00 17 rows

dbo . MMML . FACULTYCOD
<> 1 OR

Fig.3 Total Execution Time for the Query that Justify the Normalization Process — Not Optimized

Figure 3 presents various statistical information on the
query performance; however, the primary focus of this

study is the second-to-last line, “Total execution time”: 792
milliseconds. The next step involves adding an index to
each of the five tables, as shown in Figure 4.

—ICREATE NONCLUSTERED INDEX
ON STUDENT (Studnum);

~ICREATE NONCLUSTERED INDEX
ON GRADES (Studnum);|

—ICREATE NONCLUSTERED INDEX
ON COURSE (Coursecode);

—ICREATE NONCLUSTERED INDEX
ON MMCL (MajMinCode) :

-]CREATE NONCLUSTERED INDEX
ON MMML (MajMinCode) :
100 % -
e Messages
Commands completed successfully.

IX_STUDENT

IX_GRADES

IX_COURSE

IX_MMCL

IX_MMML

Fig.4 Indexing for Optimizing Normalized Tables

The same query, consisting of five joined tables and
optimized with indexes, was finally evaluated to measure
the performance of normalization, as shown in Figure 19.
As shown in Figure 5, which presents the performance of

the optimized query, the total execution time is 393
milliseconds. This represents a positive improvement of 399
milliseconds (50.4%) compared to the result shown in
Figure 3 (792 milliseconds) for the non-optimized query.

—|SELECT TOP (10@) PERCENT S.STUDNUM, S.STUDNAM, SUM(C.CREDITS) AS TotalCredits, ROUND(SUM(C.CREDITS * G.SCORE) / SUM(C.(H
FROM dbo.STUDENT AS S INNER JOIN B
dbo.GRADES AS G ON S_STUDNUM = G.STUDNUM INNER JOIN
dbo.COURSE AS C ON G.COURSECODE = C.COURSECODE INNER JOIN
dbo.MMCL ON C.COURSECODE = dbo.MMCL.COURSECODE INNER JOIN
dbo.MMML ON dbo.MMCL.MAJMINCODE = dbo.MMML.MAJMINCODE AND S.FACULTYCOD = dbo.MMML.FACULTYCOD
WHERE (G.SCORE >= 1@) AND (dbo.MMCL.NO_CREDIT <> 1) AND (dbo.MMCL.GEN_ED <> 1 OR
dbo.MMCL.GEN_ED = 1) AND (S.FACULTYCOD = 16) ml
GROUP BY S.STUDNUM, S.STUDNAM
HAVING (SUM(C.CREDITS) >= 136)
ORDER BY S.STUDNUM ~
100% - 4 3
E5 Results B Messages " Client Statistics
Trial 1 Average ~
Rows affccted by INSERT, DELETE, or UPDATE stateme... 0 > 0.0000
Number of SELECT statements 1 > 1.0000
Rows returned by SCLECT statements 1238 ~ 1238.0000
Number of transactions o ~ 0.0000
Network Statistics
Number of server roundtrips 1 > 1.0000
TDS packels senl iom client 1 = 10000
TDS packels received Tom server 20 = 200000
Bytes sent from client 1482 - 1482.0000
Bytes received from server 79742 - 79742.0000
Time Statistics
Client processing time: 36 - 36.0000
I otal execution time 393 = 393.0000
Wait time on server roplics 357 -+ 357.0000
i

Fig.5 Total Execution Time of Normalization Query - Optimized

61

AJES Vol.14 No.2 July-December 2025

Wumi Ajayi, Kikelomo Okesola, Deogratias Ntezirayao, Francis Odo and Alfred Udosen Akpan

This demonstrates the significant impact of indexes, as they
contributed to the reduction in query execution time. The
denormalization demonstration begins by combining the top
five tables into a single table. This process requires merging
tables with many-to-many or one-to-one relationships. As
shown in Figure 6, the view V_StudentGradesSummary
illustrates the relationships: the table GRADES contains the
foreign key from STUDENT to COURSE, the table MMCL
(which contains courses by program) includes the foreign

key from COURSE to MMML (which contains the list of
programs), and finally, MMML also has a foreign key
connecting it to STUDENT. The view
V_StudentGradesSummary, representing the five tables,
contains 604,538 rows. These tables need to be combined
and transformed into a single table to produce the same
results as the initial example: the list of completed students
in the Information Technology program.

EE MMML 2
EERS —_ [rm————————
C1* (All Columns,
[CIDORMVILLAG - B8 MMaL | DF/S\COPT ENG :
FACULTYCOD = - . [O* (Al Columns) CIFACOPT_FRN
DFACULTYM\N CICORNAME_EN F— |CJFACULTYCOD
DMAR,STATUS = c _ CJCORNAME_FR = |[MAIMINCODE
NATCODE 7 |ICOURSECODE CIMAIMIN_ENG
CIRELCODE 1% (All Columns) if CICREDITS CJMAJMIN_FRN
[JSECSPECODE [ICOURSECODE — |CIEXP_TERM IMAIOR
[ISEC_PRCNT [CICORNAME_FR “IGEN_ED €=
SEX [“ICORNAME_EN 6= CIMAIMINCODE =
[“ISTUDNAM = IVICREDITS b= “INO_CREDIT =
¥ISTUDNUM €= [ITHEORY CIPRACTICAL
[CJEMPLOYED [CIPRACTICAL CITHEORY
hd Creplaced
@ >
Column Alias Table Outp... Sort Type Sort Order Group By Filter Oor... or... Or...

<

FROM dbo.STUDENT AS S INNER JOIN
dbo.GRADES AS G ON S.STUDNUM = G.STUDNUM INNER JOIN
dbo.COURSE AS C ON G.COURSECODE = C.COURSECODE INNER JOIN
dbo.MMCL ON C.COURSECODE = dbo.MMCL.COURSECODE INNER JOIN

STHDNI STHNNA FACLIITY
1 of 604538 | b b|

COIIRSFE CORNA
Cell is Read Only.

SELECT S.STUDNUM, S.STUDNAM, S.FACULTYCOD, G.COURSECODE, C.CORNAME_EN, C.CREDITS, G.SCORE, dbo.MMCL.GEN_ED, dbo.MMCL.NO_CREDIT, G.TERM

dbo.MMML ON dbo.MMCLMAJMINCODE = dbo.MMMLMAIMINCODE AND S.FACULTYCOD = dbo.MMMLFACULTYCOD
GROUP BY S.STUDNUM, S.STUDNAM, S.FACULTYCOD, G.COURSECODE, C.CORNAME_EN, C.CREDITS, G.SCORE, G.TERM, dbo. MMCL.GEN_ED, dbo.MMCL.NO_CREDIT

CRENITS SCORF

GEN FN NN CRE TFRM

Fig.6 V_StudentGradesSummary View

The next step, shown in Figure 7, presents the definition and
design of the table StudentGradesReportl, which will
receive information from the five tables described above.
The table above will capture the essential information

SET QUOTED_IDENTIFIER ON
GO

~CREATE TABLE [dbo].[StudentGradesReporti](
[COURSECODE] [nvarchar](9) .
[CORNAME_EN] [nvarchar](58) NULL,
[CREDITS] [float] NULL,
[SCORE] [fleat] NULL,
[GEN_ED] [bit] NOT N
[NO_CREDIT] [bit] nOT N
[STUDNUM] [float] NULL,
[STUDNAM] [nvarchar](5@
[FACULTYCOD] [float] NULL,
[FACULTYENG] [nvarchar](35) NULL,
[TERM] [nvarchar](6) NULL

ON [PRIMARY]
GO

—>

required to generate the requested report, in this case, the
list of students in the Information Technology department
who have completed their studies.

= StudentGradesReport1 —

1= (All Columns) -~
CJCOURSECODE

ICORNAME_EN

ICREDITS =
[CISCORE =
[JGEN_ED hd
CINO_CREDIT hd
*ISTUDNUM G=
ISTUDNAM G=
MFACULTYCOD FE=
CIFACULTYENG
[JTERM LI

Fig.7 The Definition and Design of the New Denormalized Table

The next step, shown in Figure 8, presents the query using
the INSERT INTO statement to import the relevant
information-including some redundancy-into the newly

AJES Vol.14 No.2 July-December 2025

created denormalized table. The output confirms that all

604,538 records were successfully added to the table from

the view.

Relational Database Normalization vs Denormalization: A Performance Perceptive

select COURSECODE,CORNAME_EN, CREDITS,SCORE,

-4
& Messages

100 %

(604538 rows affected)

Completion time: 2025-01-18T22:01:23.2600065+01:00

= INSERT INTO StudentGradesReportl (COURSECODE,CORNAME_EN, CREDITS,SCORE, GEN_ED, NO_CREDIT, TERM, FACULTYCOD, STUDNUM,STUDNAM,FACULTYENG)
GEN_ED, NO_CREDIT, TERM, FACULTYCOD, STUDNUM,STUDNAM,FACULTYENG FROM V_StudentGradesSummary

Fig.8 The Query to Insert Data from V_StudentGradesSummary into StudentGradesReport1

In the following exercise, shown in Figure 9, the query is
similar to the one in Figure 2. The first query (Figure 2)
retrieves information from five joined and normalized
tables, while the query below retrieves the same information
from a denormalized table. Both queries produce identical
results. The process involves four steps: first, evaluating the

performance of the query on the denormalized table;
second, improving it by adding indexes; third, re-evaluating
the execution time; and finally, comparing the queries from
both approaches-normalization and denormalization-to
assess the performance of the SELECT operation between
the two techniques.

ROUND (SUM(CREDITS * SCORE)
WHERE (SCORE >= 1@) AND (NO_CREDIT <> 1) AND (GEN_ED <> 1
GROUP BY STUDNUM, STUDNAM, FACULTYCOD
HAVING (FACULTYCOD 16) AND (SUM(CREDITS)
ORDER BY STUDNUM

>= 136)

-4
B2 Results g Messages
STUDNUM STUDNAM

100 %

TotalCredits WeightedAverage

1 202416 BU202416A 138 14.62
2 202556 BU202556A 136 14.57
3 203436 BU203436A 136 1595
4 204236 BU204236A 136 158
5 204976 BU204876A 141 12.81
6 208676 BU206676A 137 13.82
7 207096 BU207096A 137 14.41
8 207196 BU207196A 139 1263
9 207256 BU207256A 140 14.98
10 208916 BU208916A 139 1363
1 209696 BU209696A 144 14
12 209716 BU209716A 140 13.37
13 210756 BU210756A 140 14.38
14 211056 BU211056A 144 14.03

~ISELECT DISTINCT TOP (1@@) PERCENT STUDNUM, STUDNAM, SUM(CREDITS) AS TotalCredits,
/ SUM(CREDITS), 2) AS WeightedAverage FROM

8 DEOS-PO\SQLEXPRESS (16.0 RTM)

dbo.StudentGradesReportl -
OR GEN_ED = 1)
b
»
~
~
DEOS-PC\User (156) SchoolDB ' 00:00:00 1,238 rows

Fig.9 A Query that Retrieves the List of Completed Students from IT Department
Presented for Denormalization Process Evaluation

Figure 10 shows the evaluation results for the query that
retrieves the list of students in the Department of

Information Management who have completed their studies.
This query has not yet been optimized with indexes.

~ISELECT DISTINCT TOP (1@@) PERCENT STUDNUM, STUDNAM, SUM(CREDITS) AS TotalCredits, ROUND(SUM(CREDITS * SCORE) / SUM(CREDI %I
FROM dbo.StudentGradesReportl al
WHERE (SCORE >= 1@) AND (NO_CREDIT <> 1) AND (GEN_ED <> 1 OR

GEN_ED = 1)
GROUP BY STUDNUM, STUDNAM, FACULTYCOD
HAVING (FACULTYCOD = 16) AND (SUM(CREDITS) >= 136)
ORDER BY STUDNUM L
~]
100% ~ 4 >
£ Results &8 Messages ” Client Statistics
Trial 1 Average
Client Execution Time 07:45:57
Query Profile Statistics
Number of INSERT, DELETE and UPDATE statements 0 -+ 0.0000
Rows affected by INSERT, DELETE, or UPDATE stateme... 0 -+ 0.0000
Number of SELECT statements 1 - 1.0000
Rows returned by SELECT statements 1238 = 1238.0000
Number of transactions 0 - 0.0000
Network Statistics
Number of server roundtrips 1 -+ 1.0000
TDS packets sent from client 1 - 1.0000
TDS packets received from server 20 - 200000
Bytes sent from client 782 - 7820000
Bytes received from server 80981 - 80981.0000
Time Statistics
Client processing time 15 - 15.0000
Total execution time 409 - 409.0000
‘Wait time on server replies 394 = 394.0000

© Query executed successfully.

B DEOS-PC\SQLEXPRESS (16.0 RTM)

DEOS-PQ\User (159) SchoolDB 00:00:00 = 17 rows

Fig.10 Total Execution Time for the Query that Justify the Denormalization Process — Non-Optimized

63

AJES Vol.14 No.2 July-December 2025

Wumi Ajayi, Kikelomo Okesola, Deogratias Ntezirayao, Francis Odo and Alfred Udosen Akpan

Similar to Figure 3, Figure 10 presents various statistical
information generated using the Display Estimated
Execution Plan and Include Client Statistics SQL query
commands. Among this information, the primary focus is
the “Total execution time”: 409 milliseconds. This
demonstrates that the query for the denormalization process

is faster than the query for the normalization process, which
had a total execution time of 792 milliseconds. The
improvement is 383 milliseconds (48.4%). In Figure 25, an
index was applied to the query to further verify its
performance.

100% ~
B Messages
Commands completed successfully.

Completion time:

CREATE NONCLUSTERED INDEX IX_StudentGradesReportl ON StudentGradesReportl (Studnum);

2025-01-19T08:55:55.57968%46+01:00

Fig.11 Indexing for Optimizing Denormalized Table

—ISELECT DISTINCT TOP
FROM
WHERE

(100)
dbo.StudentGradesReportl

GEN_ED = 1)
GROUP BY STUDNUM, STUDNAM, FACULTYCOD
HAVING (FACULTYCOD = 16) AND (SUM(CREDITS)
ORDER BY STUDNUM

>=

136)

100% ~ 4

EE Results = Messages & Client Statistics

Trial 1
09:01:08

Average

Client Execution Time
Query Profile Statistics
Number of INSERT, DELETE and UPDATE statements 0
Rows affected by INSERT, DELETE, or UPDATE stateme . 0
Number of SELECT statements 1
Rows returned by SELECT statements
Number of transactions 0
Network Statistics

- 0.0000

- 0.0000

- 1.0000

= 1238.0000
- 0.0000
Number of server roundtrips 1 - 1.0000

= 1.0000
= 20.0000
- 782.0000

TDS packets sent from client 1
TDS packets received from server
Bytes sent from client
Bytes received from server
Time Statistics
Client processing time 8
Total execution time 126
118

782
80981

-+ 8.0000
= 126.0000

Wait time on server replies - 118.0000

© Query executed successfully.

- 80981.0000

PERCENT STUDNUM, STUDNAM, SUM(CREDITS) AS TotalCredits,

(SCORE >= 1@) AND (NO_CREDIT <> 1) AND (GEN_ED <> 1 OR

@ DEOS-PQ\SQLEXPRESS (16.0 RTM) | DEOS-PC\User (156) = SchoolDB | 00:00:00 17 rows

ROUND (SUM(CREDITS * SCORE) / SUM(CREI ==

P

Fig.12 Total Execution Time for the Query that Justify the Denormalization Process —Optimized

The query in Figure 12 improves upon the query in Figure
10, which had a total execution time of 409 milliseconds. It
retrieves information from a single denormalized table and
is optimized using the index shown in Figure 11. The result

shows that the total execution time of this optimized query
is 126 milliseconds. The difference between the non-
optimized and optimized query performance is 283
milliseconds (69.2%), demonstrating the importance of
using indexes. From the previous discussions of this data

analysis, we were comparing performance of non-optimized
and optimized queries. Also, there was a comparison of the
performance of optimized queries only, between
normalization and denormalization based on their results as
shown on figures 19 and 26. The total execution time for the
normalization process is 393 milliseconds whereas the one
for denormalization is 126 milliseconds. The obtained
improvement is of 267 milliseconds (67.9%). Table II below
shows the summary of query performance analysis results.

TABLE XVI SUMMARY OF QUERY PERFORMANCE ANALYSIS RESULTS

Estimated Total Execution Time - Query speed in milliseconds / Figure N°
. . Before indexing After indexing Improvement
Technique Applied (Query not optimized) | (Query Optimized) | (Effect of indexing)
Normalization 792 ms (Fig.17) 393 ms (Fig.19) 399 ms (50.4%)
Denormalization 409 ms (Fig.24) 126 ms (Fig.26) 283 ms (69.2%)
Improvement (Effect of Indexing) 383 ms (48.4%) 267 ms (67.9%) -
Based on the foregoing, we may conclude that eliminate anomalies during INSERT, DELETE, and

denormalization performs better than normalization in terms
of query retrieval (SELECT). However, what about other
basic SQL operations such as INSERT, DELETE, or
UPDATE? This question is important because the primary
goal of normalization is to reduce data redundancy and

AJES Vol.14 No.2 July-December 2025

64

UPDATE operations. On the other hand, one may ask
whether denormalization can also perform these operations
efficiently. The answer is no, because denormalization is
designed with intentional redundancies. Although
denormalization improves data reading performance

Relational Database Normalization vs Denormalization: A Performance Perceptive

through SELECT operations, it is less efficient for data
writing and may introduce errors due to its inherent design.
However, this does not imply that denormalization is always
slower for INSERT, DELETE, or UPDATE; each operation
requires specific evaluation.

Firstly, for the INSERT operation, the following query was
executed to add one row to the denormalized table: INSERT
INTO StudentGradesReport] VALUES ('ACCT 2000, 'Al
in Business','3', NULL, 0, 0, NULL, NULL, NULL, NULL,
NULL); and its total execution time was 21 milliseconds;
while the same operation performed over the normalized
table COURSE with this query codes: INSERT INTO
COURSE VALUES ('INSY 2001',Intro. a | Intelligence
Artificielle', 'Introduction to ATI',3,30,15,0); only the total of
execution time was 12 milliseconds.

Secondly, for the DELETE operation, the query executed on
the denormalized table was: DELETE FROM
StudentGradesReport] WHERE COURSECODE= 'ACCT
2000'; and its total execution time was 161 milliseconds;
while the same operation performed over the normalized
table COURSE with this query codes: DELETE FROM
COURSE WHERE COURSECODE = 'INSY 2001'; the
total of execution time generates 17 milliseconds.

Finally, for Update operation, the following change of the
course code was applied to the denormalized table and the
following query was been written: UPDATE
StudentGradesReport]l SET coursecode 'ACCT 2001'
WHERE coursecode = 'ACCT 2000'; and its total execution
time was 230 milliseconds; while the same operation
performed over the normalized table COURSE with this
query codes: UPDATE COURSE SET coursecode= 'INSY
2002' WHERE coursecode = ‘INSY 2001’; only the total of
execution time gives 67 milliseconds. From these findings,
it is evident that for the three basic SQL data-writing
operations (INSERT, DELETE, and UPDATE),
normalization not only prevents anomalies but also executes
faster than denormalization, as its execution times were
consistently lower.

V. CONCLUSION AND RECOMMENDATIONS

This study addresses the comparison between normalization
and denormalization with respect to a single factor:
performance. The trade-off between the two methods is that
normalization is more efficient for data writing operations
(INSERT, DELETE, and UPDATE), whereas
denormalization performs better for data reading (SELECT)
operations. Making a choice between them can be
challenging. It is often preferable to create two separate
tables: one for storing normalized data, and a view for data
retrieval when needed. If there are frequent requests for the
same information, the database may be managed in two
logical parts. The first part consists of an independent
physical denormalized table for data that rarely changes,
used solely for retrieval. The second part retains separate
normalized tables, primarily used for dynamic retrieval

65

operations. If database partitioning is difficult to implement
or its necessity is uncertain, it is better to avoid
denormalization. Furthermore, given the ambiguity in
choosing the appropriate technique, particularly when
applying the method introduced by Raymond F. Boyce and
Edgar F. Codd over 50 years ago, it is recommended that
database designers, as well as other database users or
platform developers, explore new approaches. Specifically,
Al-driven or Al-assisted techniques for database
normalization and optimization [24] may offer more
powerful and effective solutions than traditional Codd
methods.

Declaration of Conflicting Interests
The authors declare no potential conflicts of interest with respect to the
research, authorship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship,
and/or publication of this article.

Use of Artificial Intelligence (AI)-Assisted Technology for Manuscript
Preparation

The authors confirm that no Al-assisted technologies were used in the
preparation or writing of the manuscript, and no images were altered using
AL

ORCID
Wumi Ajayi “* http://orcid.org/0000-0003-3362-4082
Kikelomo Okesola “*" http://orcid.org/0000-0003-0944-1497

Deogratias Ntezirayao " http://orcid.org/0009-0002-9222-9904

Francis Odo “* http://orcid.org/0009-0003-6301-4426

Alfred Udosen Akpan "= http://orcid.org/0000-0003-1454-0254
REFERENCES

[1] B. Alathari, “The Comparative Analysis for Data Normalization

Using User Interface Normal Form,” Int. J. Recent Trends Eng. Res.,

vol. 4, no. 3, pp. 59-65, 2018, doi: 10.23883/ijrter.2018.4097.qlzhe.

M. Albarak, R. Bahsoon, I. Ozkaya, and R. Nord, “Managing

Technical Debt in Database Normalization,” IEEE Trans. Sofiw.

Eng., vol. 48, mo. 3, pp. 755772, 2022, doi:

10.1109/TSE.2020.3001339.

R. Angles, M. Arenas-Salinas, R. Garcia, and B. Ingram, “An

optimized relational database for querying structural patterns in

proteins,” Database, vol. 2024, no. 00, 2023, doi:

10.1093/database/baad093.

B. Lemahieu, Seppe Broucke, Principles of Database Management,

2018, doi: 10.1017/9781316888773.

A. N. Abyzov, “Balancing Data Normalization and Denormalization

in Sports Competition Management Platforms: A Comparative

Analysis,” Cyberleninka, 2023.

Y. Jani, “Optimizing Database Performance for Large-Scale

Enterprise Applications,” Oct. 2022, 2024, doi:

10.13140/RG.2.2.14180.59521.

PhoenixNAP, “MySQL Performance Optimization - Day 5,” pp. 1—

16, 2021.

F. Zhou and Y. Gao, “Performance Study on Normalization and

Denormalization in MES System Databases,” in 2024 Int. Conf.

Intell. Comput. Data Mining (ICDM), 1EEE, Sep. 2024, pp. 90-94,

doi: 10.1109/ICDM63232.2024.10762243.

Y. Zhang et al., “A fragmentation-aware redundancy elimination

scheme for inline backup systems,” Future Gener. Comput. Syst., vol.

156, pp. 53—63, Jul. 2024, doi: 10.1016/j.future.2024.03.004.

K. K. Tirupati, S. P. Singh, S. Nadukuru, S. Jain, and R. Agarwal,

“Improving Database Performance with SQL Server Optimization

Techniques,” Modern Dyn.: Math. Progressions, vol. 1, no. 2, pp.

450494, Aug. 2024, doi: 10.36676/mdmp. v1.i2.32.

[10]

AJES Vol.14 No.2 July-December 2025

http://orcid.org/0000-0003-3362-4082
http://orcid.org/0000-0003-0944-1497
http://orcid.org/0009-0002-9222-9904
http://orcid.org/0009-0003-6301-4426
http://orcid.org/0000-0003-1454-0254
https://www.researchgate.net/publication/329280567_The_Comparative_Analysis_for_Data_Normalization_Using_User_Interface_Normal_Form
https://ieeexplore.ieee.org/document/9113328
https://ieeexplore.ieee.org/document/9113328
https://academic.oup.com/database/article/doi/10.1093/database/baad093/7571373
https://academic.oup.com/database/article/doi/10.1093/database/baad093/7571373
https://www.cambridge.org/highereducation/books/principles-of-database-management/2FAC1A38D7BF11C3BB1D330925571BE4#overview
https://www.researchgate.net/publication/384420868_Optimizing_Database_Performance_for_Large-Scale_Enterprise_Applications
https://www.researchgate.net/publication/384420868_Optimizing_Database_Performance_for_Large-Scale_Enterprise_Applications
https://www.researchgate.net/publication/386151608_Performance_Study_on_Normalization_and_Denormalization_in_MES_System_Databases
https://dl.acm.org/doi/10.1016/j.future.2024.03.004
https://www.researchgate.net/publication/384352821_Improving_Database_Performance_with_SQL_Server_Optimization_Techniques

Wumi Ajayi, Kikelomo Okesola, Deogratias Ntezirayao, Francis Odo and Alfred Udosen Akpan

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Akadal and M. H. Satman, “A Novel Automatic Relational
Database Normalization Method,” Acta Informatica Pragensia, vol.
11, no. 3, pp. 293-308, 2022, doi: 10.18267/j.aip.193.

R. K. Rajendran and T. M. Priya, “Designing an Efficient and
Scalable Relational Database Schema: Principles of Design for Data
Modeling,” in The Software Principles of Design for Data Modeling,
2023, pp. 168-176, doi: 10.4018/978-1-6684-9809-5.ch013.

B. Alathari, “The Comparative Analysis for Data Normalization
Using User Interface Normal Form,” Int. J. Recent Trends Eng. Res.,
vol. 4, no. 3, pp. 59-65, 2018, doi: 10.23883/ijrter.2018.4097.qlzhe.
V. B. Ramu, “Optimizing Database Performance: Strategies for
Efficient Query Execution and Resource Utilization,” Int. J. Comput.
Trends Technol., vol. 71, no. 7, pp. 15-21, 2023, doi:
10.14445/22312803/ijctt-v71i7p103.

N. Singh, “Normalization in DBMS (Normal Forms),” May 2023,
ResearchGate.

N. Amato, “Mastering Database Normalization: A Comprehensive
Exploration of Normal Forms,” ResearchGate, 2023.

H. Kohler, “Finding Faithful Boyce-Codd Normal Form
Decompositions,” in Proc. 2nd Int. Conf. Algorithmic Aspects Inf.
Manag., Lecture Notes in Computer Science, Jun. 2006, doi:
10.1007/11775096_11.

AJES Vol.14 No.2 July-December 2025

66

(18]

[19]

[20]

[21]

[22]

[23]

[24]

M. Fischer, P. Roessler, P. Sieben, J. Adamcic, C. Kirchherr, T.
Straubig, Y. Kaminsky, and F. Naumann, “BCNF* — From
Normalized- to Star-Schemas and Back Again,” in Companion of the
2023 Int. Conf. on Management of Data (SIGMOD ’23), New York,
NY, USA: ACM, 2023, pp. 103-106, doi:
10.1145/3555041.3589712.

T. Akbar, “Normalization in Database and Its Uses in Cloud
Computing,” ResearchGate, 2022.

S. Shah, “A Systematic Method for On-The-Fly Denormalization of
Relational Databases,” pp. 1-10, 2020.

I. C. Saidu, M. Yusuf, F. C. Nemariyi, and A. C. George, “Indexing
Techniques and Structured Queries for Relational Databases
Management Systems,” J. Niger. Soc. Phys. Sci., vol. 6, no. 4, 2024,
doi: 10.46481/jnsps.2024.2155.

M. V. Chikkamannur, A. A., and Praveena, “Indexing Strategies for
Performance Optimization of Relational Databases,” Int. Res. J. Eng.
Technol., no. May, pp. 3801-3805, 2021.

A. Anchlia, “Enhancing Query Performance Through Relational
Database Indexing,” Int. J. Comput. Trends Technol., vol. 72, no. 8,
pp. 130-133, 2024, doi: 10.14445/22312803/1IJCTT-V72I8P119.

H. Gadde, “Al-Assisted Decision-Making in Database Normalization
and Optimization,” Int. J. Mach. Learn. Res. Cyber Secur. Artif.
Intell., vol. 11, no. 01, pp. 230-259, 2020.

https://www.researchgate.net/publication/364633548_A_Novel_Automatic_Relational_Database_Normalization_Method
https://archives.christuniversity.in/items/show/18234
https://www.researchgate.net/publication/329280567_The_Comparative_Analysis_for_Data_Normalization_Using_User_Interface_Normal_Form
https://www.ijcttjournal.org/archives/ijctt-v71i7p103
https://www.ijcttjournal.org/archives/ijctt-v71i7p103
https://link.springer.com/chapter/10.1007/11775096_11
https://link.springer.com/chapter/10.1007/11775096_11
https://dl.acm.org/doi/10.1145/3555041.3589712
https://dl.acm.org/doi/10.1145/3555041.3589712
https://journal.nsps.org.ng/index.php/jnsps/article/view/2155
https://www.ijcttjournal.org/archives/ijctt-v72i8p119

	The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
	The authors received no financial support for the research, authorship, and/or publication of this article.
	The authors confirm that no AI-assisted technologies were used in the preparation or writing of the manuscript, and no images were altered using AI.

