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Abstract - The Arduino UNO Q introduces a novel dual-
processor heterogeneous architecture, combining a Qualcomm
Dragonwing QRB2210 microprocessor with a real-time
STM32US85 microcontroller. The QRB2210 features a quad-
core 64-bit Arm Cortex-A53 CPU (2.0 GHz) with an Adreno
702 GPU (845 MHz), delivering significant computational
improvements over legacy Arduino platforms. Benchmark
analysis reveals that the UNO Q achieves a 12.5% throughput
improvement over the Arduino UNO R3 (16 MHz) and a 4.2x
improvement over the UNO R4 WiFi (48 MHz). The memory
architecture shows a 1,048,576x increase in SRAM relative to
the UNO R3, with 2 GB of LPDDR4X enabling complex Al
inference. Peak memory bandwidth reaches 2.4 MB/ns,
compared to 0.32 MB/ns on the UNO R3. The dual-brain
architecture enables real-time deterministic control via the
STM32US85 subsystem, while leveraging GPU acceleration for
TensorFlow Lite inference with sub-100ms latency. This work
examines the architectural innovations and practical
implications for edge Al IoT, and robotics, which require both
high-performance computing and real-time response
guarantees in resource-constrained environments.

Keywords:  Dual-Processor  Architecture, Al Inference,
Benchmark Analysis, Memory Bandwidth Real-Time Control

L. INTRODUCTION

The Arduino has transformed prototyping and embedded
systems development in its short history since 2005.
Kondaveeti et al. (2021) carried out a systematic literature
review of 130 peer-reviewed articles from 2015-2020,
highlighting that Arduino has become an indispensable
platform in various fields such as systems design, hardware
communication, healthcare, education, agriculture, mining,
energy, and defense. Accessible, inexpensive, and
compatible with a vast ecosystem, the platform has
democratized hardware development-it allows everyone,
from non-programmers to semiconductor engineers, to
prototype IoT solutions and embedded devices at lightning
speed and without breaking the bank on lab equipment [2].

The computational power and memory architecture of
microcontrollers have increased exponentially over the past
two decades. The bibliometric study by Prabowo et al
(2023), analyzing 1,122 papers in Scopus covering the years
2008-2022, shows that the use of Arduino boards has been
increasing overall in science, specifically in automation,
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networking, and data collection. Classical Arduinos, such as
the UNO R3 (ATmega328P operating at 16 MHz with only
2 KB of SRAM), were the cornerstone for maker electronics
[4]. However, new dual-processor asymmetric systems can
now execute complex tasks that, up until now, had to be
done in cloud-based infrastructures. This represents a
critical step toward edge computing and distributed
intelligence [3]. The convergence of artificial intelligence
with embedded systems has generated a new research
frontier termed “Edge AI” or “TinyML,” which focuses on
deploying neural networks and machine learning algorithms
on resource-constrained devices. TensorFlow Lite,
developed by Google, has emerged as the dominant
framework for on-device inference, running on over 4
billion devices globally and supporting platforms from
microcontrollers to edge servers. TensorFlow Lite applies
quantization techniques-representing float32 models in int8
precision, reducing the model size and computing
requirements by 75% or more, but with no loss of accuracy-
to achieve deep learning inference on microcontroller units
(MCUs) using a few kilobytes of SRAM rather than leaving
smartphones as their only home [4].

II. LITERATURE REVIEW

Today’s embedded systems tend to embrace heterogeneous
multi-processor architectures that integrate general-purpose
CPUs with specialized accelerators [6]. A number of studies
have investigated how to exploit heterogeneity provided in
MPSoC (multiprocessor system-on-chip) platforms, where
non-real-time OS workloads can be mapped onto the
powerful application processors and deterministic real-time
workloads are offloaded to dedicated MCUs without OS
overhead. This architecture-typified by STM32MP1 devices
that integrate ARM Cortex-A processors with real-time-
capable Cortex-M controllers-has become central in
robotics, autonomous systems, and industrial automation,
which demand both massive computing power and
predictable response times [5]. Qualcomm’s Dragonwing
processor family represents a significant advancement in
edge AI hardware, designed specifically for IoT, mobile,
and embedded applications demanding both connectivity
and computational performance. The QRB2210 variant
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features quad-core 64-bit ARM Cortex-A53 processors
clocked at 2.0 GHz, an Adreno 702 GPU at 845 MHz, dual
image signal processors for vision acceleration, and 2 GB
LPDDR4X memory operating at 1804 MHz. Qualcomm’s
acquisition of Arduino in October 2025 represents a
strategic consolidation of edge Al infrastructure, combining
Dragonwing’s hardware capabilities with Arduino’s 20-year
ecosystem of libraries, community development, and
educational adoption, fundamentally reshaping embedded
development accessibility and capability distribution [6].
Real-time embedded systems require predictable timing
behavior, where task execution must complete within
specified deadlines regardless of system load. Academic
research demonstrates that heterogeneous architectures
enable dual-path task scheduling: safety-critical real-time
tasks execute on MMU-less microcontrollers (STM32U585
in Arduino UNO Q at 160 MHz) with guaranteed response
times, while flexible non-real-time tasks leverage Linux-
based application processors for dynamic resource
allocation. This separation prevents Linux kernel
preemption and interrupt handling from introducing non-
deterministic latencies into control loops, critical for
applications such as autonomous robots, industrial
machinery, and safety-critical medical devices, where
missed deadlines could cause harm [7].

Google’s TensorFlow Lite Micro framework specifically
targets ultra-low-power inference on MCUs with minimal
SRAM, enabling neural networks on devices as small as
Arduino Nano 33 BLE boards with only 256 KB flash and
64 KB SRAM. Optimization techniques including
quantization-aware training, pruning (removing unnecessary
neural network connections), and model architecture search
have reduced inference latency by 10-100x while
maintaining accuracy. Research from Edge Impulse’s
integration with TensorFlow demonstrates that model
compression transforms a 1-2 MB floating-point model into
a 50-100 KB quantized variant executable on 512 KB
microcontrollers, enabling computer vision, audio
processing, and anomaly detection at battery-powered edge
devices [8]. The Fraunhofer Institute for Microelectronic
Circuits and Systems (IMS) developed AIfES (Artificial
Intelligence for Embedded Systems), an open-source C-
based ML framework supporting deployment and on-device
training of neural networks on hardware ranging from 8-bit
Arduino Uno boards to 64-bit processors. AIfES uniquely
enables both inference and training on the edge device
itself-allowing devices to adapt and personalize without
cloud connectivity-while maintaining compatibility with
industry-standard frameworks including TensorFlow, Keras,
and PyTorch. Integration with Arduino’s Library Manager
and support for the Wokwi simulator make AIfES
accessible to developers without specialized Al
backgrounds, democratizing embedded machine learning in
a similar way to how Arduino democratized microcontroller
programming [9].

Computer vision applications-such as object detection,
image classification, and facial recognition-represent

computationally intensive tasks traditionally requiring cloud
infrastructure. Recent advances in model compression and
specialized hardware enable real-time vision processing on
embedded devices. OpenCV’s deep neural network (DNN)
module supports inference from models trained in PyTorch,
TensorFlow, ONNX, and Caffe formats, with GPU
acceleration via CUDA or OpenCL. Lightweight
architectures including MobileNet, EfficientNet, and YOLO
variants achieve 10-100x  computational reduction
compared to standard models with minimal accuracy loss,
enabling 30+ FPS object detection on single-core embedded
processors for applications including smart surveillance,
autonomous navigation, and industrial quality inspection
[10]. Research demonstrates that deploying computer vision
models from the training environment to edge devices
requires architectural modifications and optimization
strategies, including network conversion to standardized
formats (ONNX), quantization selection, and hardware
acceleration considerations. Studies deploying RetinaNet
for 2D object detection and PointPillars for 3D LiDAR
processing on edge devices reveal that TensorRT achieves
superior performance on convolutional layers, while
TorchScript excels with fully connected layers.
Quantization reduces runtime by 20-40% with negligible
accuracy degradation. The complete workflow from Python
training environment to C++ embedded deployment
demands careful consideration of model size, latency
budgets, and power consumption-constraints well-addressed
by heterogeneous architectures that separate compute-
intensive vision tasks (GPU) from real-time sensor control
(MCU) [11].

The Internet of Things ecosystem comprises billions of
networked sensor nodes transmitting environmental data
through heterogeneous wireless technologies. Research
comparing IoT platforms reveals that Arduino boards excel
in analog sensor integration and low-cost prototyping,
Raspberry Pi dominates high-level processing and cloud
integration, while ESP8266/ESP32 modules provide WiFi
connectivity in compact form factors. Wireless protocols
including WiFi, Bluetooth, Zigbee, Z-Wave, LoRaWAN,
and NB-IoT each present trade-offs in range, power
consumption, bandwidth, and infrastructure requirements.
LoRaWAN enables >10 km range with <100 mW power
consumption by transmitting small data packets
infrequently, ideal for battery-powered agricultural and
environmental monitoring applications [12]. LoRaWAN
represents the dominant unlicensed LPWAN technology,
enabling long-range (10-50 km) communication with <1
mW power consumption by leveraging sub-GHz
frequencies and adaptive data rates. LPWAN technologies
address the constraint that traditional cellular networks (4G
LTE, 5G) consume 100-1000x more power than
LoRaWAN, making them unsuitable for battery-powered
sensors deployed for 5-10year lifespans. Research
demonstrates LoORaWAN gateways supporting thousands of
concurrent end-nodes, making the technology ideal for
large-scale IoT deployments in agriculture, smart cities,
asset tracking, and industrial monitoring. Arduino
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integration with LoRaWAN modules enables
prototyping of long-range IoT applications
requiring proprietary cellular infrastructure [13].

rapid
without

Fifth-generation cellular networks introduce ultra-reliable
low-latency communication (URLLC) with <l ms end-to-
end latency and enhanced mobile broadband (eMBB)
supporting >1 Gbps downlink, enabling real-time video

streaming, remote surgery, and autonomous vehicle
teleoperation. Industrial IoT applications increasingly
hybridize 5G with wunlicensed spectrum LPWAN

technologies: 5G provides high-bandwidth connectivity for
video and large file transfers, while LoRaWAN handles
numerous low-bandwidth sensor nodes, creating resilient
multi-connectivity IoT infrastructures. The convergence of
5G, edge computing, and Al enables distributed
intelligence, where sensor fusion, ML inference, and
actuation occur locally, while 5G provides optional cloud
connectivity only for non-time-critical analytics and long-
term data archival.

Arduino’s ecosystem has become foundational for hobbyist
and educational robotics, enabling projects from simple
obstacle-avoiding robots to sophisticated autonomous
systems performing SLAM (Simultaneous Localization and
Mapping), computer vision-based navigation, and swarm
coordination. Research documents Arduino robotics
applications across beginner (line-following, obstacle
avoidance), intermediate (gesture control, voice commands,
maze solving), and advanced (pick-and-place arms, self-
balancing robots, SLAM systems) complexity levels, each
progressively introducing concepts in control theory, sensor
fusion, and real-time programming. Arduino’s accessibility
has democratized robotics education, enabling students
worldwide to prototype autonomous systems without
$10,000+ professional robotics platforms, accelerating
innovation cycles and broadening participation in robotics
research [14].

The use of Arduino in agricultural IoT applications shows a
performance boost in real-time soil moisture, temperature,
humidity, and water levels. A smart agriculture IoT system
based on Arduino as the core component uses multiple
sensors to send real-time data to cloud platforms such as
ThingSpeak, Adafruit 10, and Ubidots. Real-time
visualization and control: if the soil moisture drops below a
certain threshold, the irrigation system should start working;
if moisture levels increase above the threshold, the irrigation
stops. If the temperature starts exceeding limits for certain
crops, cooling systems should start working and stop when
the temperature drops [15].

For example, research showed 30-50% water savings in the
field with a 15-25% yield increase by using automated
irrigation rather than employing someone to collect data and
make decisions from end to end. This approach is
advantageous for regions with scarce water supplies and
high costs but can bring multifold returns. Other examples
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of systems using edge intelligence bring really economic
and environmental value [16].

Research on smart home systems has showcased that
systems based on Arduino can reduce cloud dependency in
areas such as lighting, HVAC, security control, and power
saving. Recht ef al. argued that Wi-Fi is more prevalent in
consumer-based systems, while Zigbee and Z-Wave use
mesh networking and are more reliable, thus preferred by
companies. The research also compared smart home on/off
systems to supermarket elements. One can observe that the
more decisions are made by edge devices, the easier it is to
keep systems working on simple tasks when the cloud is
unavailable [17].

Industrial IoT and Predictive Maintenance: Interest in
industrial applications using Arduino-based sensors has
grown, particularly for intelligent systems implemented
inside network control centers [18]. Useful engines [19],
where the remaining lifetime of an engine is determined
through intelligent decisions based on sensor inputs, such as
vibration sensors, acoustic emission monitoring, and
thermal imaging, can benefit from Arduino-based MCUs for
early fault detection. Edge-based pattern recognition and
anomaly detection algorithms are key to predictive
maintenance.  Research  indicates that  predictive
maintenance reduces unplanned downtime by 40-50% and
extends equipment life by 10-20% over reactive
maintenance approaches. Return on investment (ROI) is
typically realized within 6-18 months for heavy equipment
industries such as  manufacturing, energy, and
transportation.

Autonomous Vehicles and Real-Time Path Planning:
Autonomous vehicle research depends on embedded real-
time control systems for sensor fusion, path planning, and
vehicle actuation [19]. Arduino-like platforms also play an
educational and research role, as students can use them to
test autonomous navigation prototypes and algorithms
before deploying them in commercial vehicles. Although far
more capable processors are used in production autonomy
systems managing hundreds of sensors and making safety-
critical decisions, research demonstrates that heterogeneous
architectures-combining powerful GPUs for computer
vision processing with deterministic real-time MCUs for
vehicle control-provide the computational diversity
necessary for autonomous driving, where missing a camera
frame may be tolerable, but missing a brake command
response is unacceptable.

Model deployment to edge devices involves converting
trained models from Python frameworks (TensorFlow,
PyTorch) to embedded-compatible formats (TensorFlow
Lite, ONNX), applying quantization and pruning
optimizations, and testing inference latency and memory
usage on target hardware. Research documents that
quantization to int8 typically reduces model size by 75%
with <1% accuracy loss, while pruning removes 50-90% of
network connections through sparsity techniques. Tools
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such as the TensorFlow Model Optimization Toolkit, Edge
Impulse’s  automated optimization pipelines, and
Qualcomm’s Al Inference Suite abstract low-level
optimization details, enabling domain experts without deep
learning backgrounds to deploy custom models to edge
devices efficiently [20].

Edge computing also mitigates the drawbacks of cloud-
based Al by saving sensitive information locally and
reducing the amount of data transmitted to cloud servers.
However, edge systems pose new security challenges, such
as physical tampering, firmware vulnerabilities, and
wireless communication interception. A study of embedded
security demonstrates that hardware-quantum cryptographic
engines are faster than their software-only counterparts
(Whithness, 1996).  AES-256  incurs  negligible
computational overhead, and practically useful secure
communication protocols can be supported. Protective boot
mechanisms prohibit unsanctioned firmware modifications,
and trusted execution environments fence sensitive
operations, ensuring they are isolated. Arduino UNO Q’s
integration of STM32U585 security features and
Qualcomm’s hardware security modules demonstrates
industry recognition that privacy-preserving edge Al
requires security-by-design architecture [21].

Battery-powered IoT devices require extreme power
efficiency, where milliwatts of consumption represent the
acceptable budget for multi-year device lifetimes. Research
demonstrates that heterogeneous architectures enable
significant power savings through selective subsystem
activation: when sensors detect inactivity, the powerful
application processor enters sleep mode while a low-power
coprocessor monitors sensor. Upon detecting events of
interest, the main processor wakes for processing. Studies
quantify power consumption improvements of 10-100x
through architectural optimization and firmware design
patterns, enabling previously impossible deployment
scenarios, including multi-year underground monitoring of
remote mines or months-long wildlife surveillance in areas
lacking external power infrastructure [22].

AIfES and similar frameworks allow for local learning on
edge devices, enabling systems to adapt to local situations
without the need for cloud resources or redeployment. For
example, a smart home system trained on specific user
behavior patterns or a contactless social distancing detector
trained on data from wrist-worn devices can generalize
efficiently from off-distribution to distribution setups,
enhancing precision without sacrificing privacy. Research
shows that memory footprint must also be carefully
managed for memory-intensive on-device training and
quantization-aware algorithms to work under embedded
constraints. Despite these challenges, on-device learning
enables adaptive systems capable of working with fixed
models, particularly useful for applications in which
conditions shift quickly and/or ground truth labels become
available from user feedback over time [23].

Arduino’s success derives substantially from its open-
source hardware/software model, comprehensive
documentation, and active developer community solving
problems collaboratively. The Arduino IDE, available freely
on Windows/Mac/Linux, removes development
environment costs; the IDE itself operates on modest
hardware and provides compiler toolchains for dozens of
target platforms. Research examining open-source hardware
adoption demonstrates that the availability of working code
examples, comprehensive tutorials, and responsive
community forums dramatically accelerates adoption and
innovation. Arduino’s ecosystem-including hundreds of
compatible shields, libraries, and reference designs-
represents accumulated intellectual capital exceeding
millions of engineering hours that commercial platforms
cannot economically replicate [24].

Arduino has become ubiquitous in K-12 and undergraduate
STEM education, with studies documenting that hands-on
Arduino projects significantly improve student engagement,
retention, and learning outcomes in computer science,
electrical engineering, and robotics courses. The obvious
and reactive physical feedback of the Arduino applications-
the light turns on and off at an important point in your code,
a motor responds to an instruction-requires interaction
between abstractions and reality, which significantly
contributes to its educational efficacy. Arduino’s global
networks of educators, educational pricing programs, and
compatibility with existing curricula (e.g., LEGO
Mindstorms, VEX Robotics platforms) have made Arduino
the de facto standard in academia, helping millions of
students learn basic embedded system design,
programming, and engineering principles annually [25].

The rise of the maker movement, with its focus on
accessible fabrication tools, open-source designs, and
collaboration, coincides with the appearance of Arduino.
This forms a positive feedback loop in which Arduino
enables personal projects that inspire others to start new
ones, generating demand for teaching material and
expanded product lines. Maker activity research has shown
that easy-to-use microcontroller platforms lower the barrier
to prototyping new applications, allowing non-engineers to
create very sophisticated systems for personal or community
requirements. The shift in culture from passive consumer
electronics to active making and developing has led to faster
innovation in personal robotics, home automation,
environmental sensing, and other sectors where traditional
economic incentives have discouraged entrepreneurship
[26].

Current [oT platforms are generally adopting more complex
SoCs with embedded Linux (for flexible application
development) in combination with RTOS or bare-metal
firmware (to achieve deterministic control). Arduino UNO
Q’s combination of Debian Linux running on Qualcomm
Dragonwing with FreeRTOS-compatible STM32U585
exemplifies this pattern. Developers write flexible
Python/Node.js  applications on Linux for data
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processing and connectivity, while critical real-time
functions (sensor sampling, motor control) execute on
dedicated real-time subsystems. Research demonstrates that
heterogeneous software stacks require careful inter-
processor communication architecture (shared memory,
message passing, interrupt signaling) but enable
productivity gains through language flexibility without
sacrificing real-time guarantees [27].

Arduino’s introduction of App Lab represents an evolution
toward comprehensive development platforms supporting
multiple programming paradigms (block-based visual
programming, Python, C++) and development styles (rapid
prototyping, advanced optimization). Integration with the
Edge Impulse platform streamlines the machine learning
workflow: users collect sensor data on Arduino devices,
train models in the cloud, and deploy optimized models
back to devices-all through a unified interface accessible to
non-specialists. Research on programming environment
design demonstrates that reducing cognitive load through
appropriate abstraction levels (visual programming for
beginners, low-level debugging for experts) broadens
accessibility while maintaining flexibility for advanced use
cases, potentially explaining Arduino’s adoption across
educational, hobbyist, and professional engineering contexts
[28].

Contemporary research emphasizes the synthesis of
artificial intelligence, the Internet of Things, and edge
computing into integrated “Internet of Intelligent Things”
(IoIT) ecosystems, where distributed edge nodes possess
local intelligence enabling real-time autonomous decision-
making. Rather than dumb sensors transmitting raw data to
cloud AI systems, IoIT architectures embed inference
capabilities throughout the distributed system, enabling
local context-awareness, privacy preservation, and latency
reduction. Arduino platforms incorporating machine
learning support represent foundational infrastructure for
IoIT deployment. The combination of accessible hardware,
integrated libraries, and community best practices
accelerates the transition from traditional IoT (sensor —
cloud) toward intelligent edge architectures where decisions
emerge from distributed embedded intelligence [29].

Despite remarkable progress, substantial opportunities
remain in embedded AI, including standardizing model
formats and optimization pipelines, developing efficient
multi-model inference architectures, enabling secure
collaborative learning across distributed edge devices, and
creating debugging/profiling tools for embedded ML [30].
Emerging technologies, including photonic computing,
quantum-inspired ~ optimization, and  neuromorphic
processors, may dramatically expand embedded Al
capabilities within fixed power budgets. Recently, as edge
computing evolves from research to industry standard,
Arduino’s role may consistently shift, becoming more of a
maker/education platform than an enterprise edge
infrastructure. This change may occur even with (or perhaps
because of) Qualcomm’s acquisition and integration of
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Arduino into the wider edge computing ecosystem of
industrial IoT, autonomous systems, and future smart
applications, as illustrated in Figure.1.

Fig.1 Arduino Uno Q Board

III. METHODOLOGY
A. Hardware Architecture and Specifications

The Arduino UNO Q employs a novel dual-processor
heterogeneous computing architecture that combines a high-
performance, Linux-capable microprocessor with a real-
time microcontroller, enabling the simultaneous execution
of computationally intensive Al workloads and
deterministic sensor control operations. This section
presents the technical specifications, architectural
framework, and experimental methodologies used to
characterize the platform’s capabilities.

1. Qualcomm Dragonwing QRB2210 Microprocessor Unit
(MPU): The primary computing subsystem utilizes the
Qualcomm Dragonwing QRB2210 processor, a cost-
effective, energy-efficient SoC optimized for robotics and
IoT applications. The QRB2210 features a quad-core, 64-bit
ARM Cortex-A53 CPU architecture operating at a
maximum clock frequency of 2.0 GHz, with 512 KB of
unified L2 cache shared across all cores. The processor
implements the ARMVS-A instruction set architecture,
supporting both 32-bit and 64-bit execution modes, enabling
efficient processing of legacy and contemporary software
stacks.

a. CPU Microarchitecture and Datapath: The Cortex-AS53
implements an in-order 8-stage pipeline architecture
optimized for power efficiency rather than maximum
performance. The pipeline stages are: Fetch 1 (F1), Fetch 2
(F2), Decode (D), Issue (I), Execute 1 (E1), Execute 2 (E2),
Memory Access (M), and Write-Back (WB). The DU pipe
supports 2 dispatches per clock cycle for numerous
instructions and, as long as dependence chains allow, can
dispatch different instructions each clock cycle, obtaining a
theoretical peak throughput of 2.5 DMIPS/MHz. All cores
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are equipped with dedicated 32 KB I-cache and 32 KB D-
cache, with a 4-way set-associative configuration, which
reduces memory access latency for frequently referenced
code and data structures.

b. GPU: The Qualcomm Adreno 702 GPU is integrated and
runs at a clock frequency of 845 MHz. It provides compute
capability for OpenGL ES 3.1, OpenCL 2.0, and Vulkan 1.1
APIs to enable rich graphics rendering and accelerate
machine learning workloads within space constraints
(GPGPU). The GPU implements 64-bit memory addressing
with  Qualcomm Universal Bandwidth Compression
(UBWC) technology, reducing memory bandwidth
requirements by 30-50% through lossless tile-based
compression. Hardware acceleration for neural network
inference enables heterogeneous Al workload distribution
between the CPU and GPU compute units.

c¢. Image Signal Processors (ISPs): Dual Qualcomm Spectra
340L camera ISPs support concurrent processing of two 13
MP camera sensors or a single 25 MP sensor at 30 frames
per second (fps) with Zero Shutter Lag (ZSL) capability.
Advanced image processing features include multi-frame
noise reduction (MFNR), electronic image stabilization
(EIS), forward-looking bad pixel correction (BPC), and
hardware-accelerated High Dynamic Range (HDR)
processing. The ISPs interface via a 4-lane MIPI CSI
(Camera Serial Interface), supporting both C-PHY 1.0 and
D-PHY 1.2 physical layer protocols.

d. Digital Signal Processor (DSP): The integrated
Qualcomm Hexagon DSP operates in a dual-core
configuration, shared between the Snapdragon Sensor Core
and Low-Power Audio Subsystem (LPASS). The always-on
DSP enables ultra-low-power sensor fusion, voice activity
detection (VAD), and keyword spotting (KWS), consuming
<1 mA during continuous operation. Hardware acceleration
for Fast Fourier Transform (FFT), Finite Impulse Response
(FIR) filtering, and matrix operations reduces computational
latency for signal processing applications by 10-100x
compared to CPU-only implementations.

e. Memory Architecture: The system incorporates 2 GB
LPDDR4X SDRAM (4 GB variant available), operating at
an 1804 MHz effective data rate via a dual-channel 16-bit
interface (2 x 16-bit configuration), providing a peak
theoretical memory bandwidth of 14.4 GB/s. An alternative
LPDDR3 SDRAM configuration, supporting 933 MHz via a
single-channel 32-bit interface, enables cost-optimized
implementations. Embedded 16 GB eMMC 5.1 flash
storage (32 GB variant available) provides persistent storage
for Debian Linux OS, applications, and user data without
requiring an external SD card.

[ Display and Multimedia Support: The Qualcomm Adreno
Display Processing Unit (DPU) 920 supports HD+
resolution (720 x 1680 pixels) at a 60 Hz refresh rate with
10-bit end-to-end color depth and hardware composition of
up to four display layers. Video output is provided via
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USB-C DisplayPort Alternate Mode or a dedicated MIPI-
DSI interface (single 4-lane configuration), supporting D-
PHY 1.2 and C-PHY 1.0 protocols. A hardware video
encoding/decoding engine supports H.264 (AVC) and
H.265 (HEVC) codecs up to 1080p at 60 fps.

g. Connectivity Subsystems: The integrated Wi-Fi 5 (IEEE
802.11ac) transceiver supports dual-band operation (2.4
GHz and 5 GHz) with maximum link rates up to 867 Mbps
via 2x2 MIMO spatial streams. The Bluetooth 5.1
controller, with integrated Low Energy (LE) support,
enables wireless peripheral connectivity and beacon-based
positioning. An optional GNSS receiver supports GPS,
GLONASS, BeiDou, and Galileo satellite navigation
systems for location-based services.

2. STMicroelectronics STM32U585 Microcontroller Unit
(MCU): The real-time control subsystem employs the
STM32U585 microcontroller, featuring an ARM Cortex-
M33 core with TrustZone security extensions, operating at a
maximum clock frequency of 160 MHz. The STM32U585
provides deterministic real-time response guarantees
essential for sensor sampling, motor control, and safety-
critical ~applications where timing violations are
unacceptable.

a. Memory Configuration: The MCU has 2 MB of
embedded flash memory with Error Correction Code (ECC)
protection, and up to 786 KB of SRAM, which can be
configured as a single bank or distributed among several
banks that can execute code and access data simultaneously.
The memory architecture includes a dedicated Instruction
Cache (ICACHE) to enhance the efficiency of code
execution by storing and maintaining the most useful
instructions in a cacheable manner.

b. Math Accelerators: The hardware CORDIC (COordinate
Rotation DlIgital Computer) coprocessor accelerates
trigonometric functions (sin, cos, tan), hyperbolic functions,
square root, and vector magnitude calculations, with latency
10-20x lower than software implementations. The Filter
Math Accelerator (FMAC) accelerates FIR and IIR digital
filters commonly used in signal processing applications.

¢. FPU (Floating-Point Unit): The chip includes a single-
precision 32-bit hardware floating-point unit complying
with the IEEE 754 standard, allowing much faster
processing of real numbers than previous fixed-point units,
where the CPU requires an expensive software runtime
library for each application to work with real numbers.

d. Power Management. The ultra-low-power architecture
allows for several operating modes targeting various levels
of power/performance trade-offs. In run mode, current
consumption is 31.9 pA/MHz (at VCORE = 1.2 V) and 19.5
pA/MHz (at VCORE = 0.9 V). The full SRAM is retained
during stop mode, with current consumption ranging from
8.95 A (Stop 2) to 39.5 pA (Stop 1). Deep sleep standby
can be combined with an RTC or used without it, and the
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RTC consumes only an additional 85 nA while in this mode.
No interrupt occurs on cascaded pins during this mode, and
the lowest power shutdown mode consumes just a few nA.

3. GPIO Pin Configuration and Electrical Specifications:
The Arduino UNO Q provides comprehensive GPIO
(General Purpose Input/Output) connectivity through
multiple header configurations, maintaining compatibility
with classic Arduino UNO shields while adding high-speed
expansion capabilities. STM32U585 MCU Digital GPIO:
The STM32U585 MCU provides digital GPIO pins for
standard Arduino digital I/O operations (digitalWrite,
digitalRead, pinMode). All GPIO pins are 5V-tolerant for
input. Outputs operate at 3.3V logic levels and can be
configured by some of these pins, according to the formula
explained elsewhere. The maximum source/sink current per
GPIO pin is 25 mA. Furthermore, a total device current
limit ensures safe operation. To allow flexibility in how
users employ a GPIO pin, it has six different operating
modes: input floating, input pull-up (+40kQ internal
resistor), input pull-down (internal +40kQ resistor), output
push-pull, output open-drain. The peripheral connectivity
also offers multiple alternate functions for GPIO pins.

a. Analog Input Pins: Multiple 12-bit Analog-to-Digital
Converter (ADC) channels enable the measurement of
analog voltages ranging from 0 to 3.3V, with a resolution
of 0.806 mV per LSB. ADC4 remains operational during
low-power modes, enabling wake-on-analog-threshold
functionality.

b. PWM Output Capability: Pulse Width Modulation
(PWM) outputs generated via hardware timers provide
variable-duty-cycle square wave signals for LED dimming,
motor speed control, and analog voltage synthesis. PWM
frequency and resolution are configurable through timer
prescaler and auto-reload register settings.

c. Communication Interfaces: The platform exposes
multiple serial communication protocols: IPC (Inter-
Integrated Circuit), supporting standard mode (100 kHz),
fast mode (400 kHz), and fast-mode-plus (1 MHz); SPI
(Serial Peripheral Interface), supporting master/slave
modes up to an 80 MHz clock frequency; UART
(Universal Asynchronous Receiver-Transmitter),
supporting baud rates up to 5 Mbps; and CAN (Controller
Area Network) for automotive and industrial bus
communication.

d. High-Speed Expansion Headers: Additional IMEDIA,
JMISC, and JDIGITAL headers provide access to high-
bandwidth MPU interfaces, including MIPI-DSI display
output, MIPI-CSI camera input, I?S/I?C digital audio, PSSI
parallel camera interface, and additional GPIO pins.

B. AI Capabilities and Supported ML Algorithms

The Arduino UNO Q supports comprehensive machine
learning and artificial intelligence workloads through
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heterogeneous hardware acceleration and optimized
software frameworks. This section characterizes the Al
inference capabilities, supported model architectures, and
deployment workflows.

1. Hardware Al Acceleration Architecture:

a. CPU-based Inference: The quad-core Cortex-A53 CPU
supports the inference of quantized neural networks
utilizing NEON SIMD (Single Instruction Multiple Data)
vector instructions for parallel processing of activation
functions, matrix multiplications, and convolution
operations. CPU inference supports FP32 (32-bit floating-
point), INT16 (16-bit integer), and INT8 (8-bit integer)
quantization schemes.

b. GPU-accelerated Inference: The Adreno 702 GPU
provides heterogeneous acceleration for compute-intensive
layers, including 2D convolutions, depthwise separable
convolutions, and fully connected layers. GPU inference
via OpenCL 2.0 compute kernels supports FP32 and FP16
(16-bit floating-point) precision. The TensorFlow Lite
GPU  delegate automatically offloads compatible
operations to the GPU, reducing inference latency by 2—5x
compared to CPU-only execution.

c. DSP Neural Processing: The Hexagon DSP supports
FP16 and INT8 quantized inference with specialized vector
instructions, optimizing throughput for convolutional and
recurrent neural network layers. Certain chipsets provide
INT16 quantization support for applications requiring
higher precision than INT8 while maintaining a lower
memory footprint than FP32.

2. Supported Machine Learning Frameworks and Libraries:
a. TensorFlow Lite for Microcontrollers: The platform
includes the pre-installed TensorFlow Lite runtime
optimized for embedded Linux environments. TensorFlow
Lite supports the deployment of models trained in
TensorFlow or Keras frameworks, with post-training
quantization reducing model size by 75% and inference
latency by 2-4%. Quantization-aware training (QAT)
enables the deployment of INT8 models while maintaining
accuracy within 1% of the FP32 baseline.

b. Edge Impulse Integration: The Arduino App Lab includes
native integration with the Edge Impulse platform, enabling
a complete machine learning workflow from data collection
through model deployment. Pre-optimized AI models for
the UNO Q include keyword spotting (“Hey Arduino”
wake-word detection), face detection, object classification,
anomaly detection, and sound recognition. Custom models
trained via Edge Impulse Studio are deployed as
containerized applications, executing inference on the CPU
or GPU depending on model architecture and performance
requirements.

c¢. PyTorch and ONNX Support: The Debian Linux
environment enables the installation of PyTorch via
pip/conda  package  managers, supporting model
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development and inference. The ONNX (Open Neural
Network Exchange) runtime provides cross-framework
model portability, enabling the deployment of models
trained in PyTorch, TensorFlow, or other frameworks. The
Qualcomm Neural Processing SDK supports the conversion
of ONNX models to the Qualcomm AI Engine Direct
format, optimizing execution on the Hexagon DSP.

d. OpenCV Computer Vision Library: The Python OpenCV
(cv2) module, installed via the apt package manager,
provides comprehensive computer vision algorithms,
including image filtering, feature detection, object tracking,
and deep neural network (DNN) inference. The OpenCV
DNN module supports model formats including
TensorFlow, PyTorch, ONNX, Caffe, and Darknet, enabling
the deployment of pre-trained models without framework-
specific dependencies.

3. Supported Neural Network Architectures and Algorithms:
a. Convolutional Neural Networks (CNNs): The platform
supports the deployment of CNN architectures for image
classification, object detection, and semantic segmentation
tasks.  Optimized implementations of MobileNet,
EfficientNet, SqueezeNet, and ResNet variants provide
inference latency of <100 ms for 224x224 RGB input
images. Object detection models, including YOLO (You
Only Look Once), SSD (Single Shot Detector), and
EfficientDet, achieve real-time inference (>10 FPS) for
applications requiring spatial localization of detected
objects.

b. Recurrent Neural Networks (RNNs): Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU), and simple
RNN architectures support temporal sequence processing
for applications including speech recognition, time-series
forecasting, and sensor fusion. Hardware optimization of
matrix-vector operations enables efficient processing of
recurrent layers, despite sequential data dependencies
limiting parallelization.

c. Transformer Models: Limited support for lightweight
transformer  architectures enables natural language
processing and attention-based vision tasks. However,
computational requirements typically exceed real-time
constraints for large-scale models.

d. Classical Machine Learning: Support for traditional ML
algorithms, including Support Vector Machines (SVM),
Random Forests, K-Nearest Neighbors (KNN), and
clustering algorithms via the scikit-learn Python library.
Classical ML often provides superior performance to deep
learning for tabular data and small-dataset scenarios.

e. Audio Processing Models: Pre-trained models for
keyword  spotting, speaker identification, audio
classification, and acoustic event detection leverage MEL-
spectrogram feature extraction and 1D-CNN architectures
optimized for temporal audio data.
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C. Power Consumption Characterization and Operating
Modes

Comprehensive  power  consumption  measurements
characterize energy efficiency across multiple operating
modes, enabling battery-powered IoT deployment scenarios.
This section presents the experimental methodology and
measured current consumption data.

1.  Measurement Methodology: Power consumption
measurements were carried out with a calibrated digital
multimeter (Fluke 87V), measuring current at the 3.3V rail
that supplies the STM32U585 MCU, and at the 5V USB-C
power supply that delivers the video signal to the QRB2210
MPU. Measurements were made at an ambient temperature
of 25°C, in accordance with a stable power supply, and
subject to voltage clamping within =1% error boundaries, as
specified for each operating mode. Continuous service was
conducted for a 60-second interval, with data logging at a
10 Hz sampling rate. The records include mean time-
averaged current consumption, calculated over I samples for
each iteration.

2. Operating Mode Definitions and Power Consumption:

a. Normal Operating Mode (Active Processing): The system
executes computational workloads with all peripherals
enabled, including Wi-Fi connectivity, Bluetooth active,
CPU cores operating at a maximum clock frequency of 2.0
GHz, and GPU processing graphics operations. Measured
current consumption: MPU = 450-650 mA @ 5V; MCU =
40-60 mA @ 3.3V. Total system power is approximately
2.5-3.5 W, depending on computational intensity and
peripheral activity.

b. Wi-Fi-Enabled Mode (Connected Idle): The MPU
maintains an active Wi-Fi connection with periodic beacon
transmission and reception; CPU cores operate at a reduced
clock frequency (800 MHz) during idle periods; the MCU is
in low-power Run mode. Measured current consumption:
MPU = 180-250 mA @ 5V; MCU = 12-18 mA @ 3.3V.
Total system power is approximately 1.0-1.4 W. Wi-Fi-
enabled mode is suitable for IoT devices requiring
continuous cloud connectivity while minimizing idle power
consumption.

¢. Bluetooth Low Energy (BLE) Mode: The MPU maintains
a BLE connection with a 1-second connection interval; CPU
cores are in a low-power idle state; the MCU monitors
sensors via interrupt-driven wake-up. Measured current
consumption: MPU = 120-180 mA @ 5V; MCU = 8-12
mA @ 3.3V. Total system power is approximately 0.7-1.0
W. BLE mode enables wireless connectivity with
significantly reduced power compared to Wi-Fi operation.

d. Sensor Monitoring Mode (MPU Deep Sleep, MCU
Active): The MPU is in deep sleep state with only the RTC
(Real-Time Clock) and wake-up timers active; the MCU is
actively sampling sensors and performing local processing;
the MPU wakes up periodically for data transmission or
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intensive processing. Measured current consumption: MPU
= 30-50 mA @ 5V (deep sleep + periodic wake); MCU =
6-10 mA @ 3.3V. Total system power is approximately
0.2-0.3 W, enabling battery-powered operation for days to
weeks, depending on wake-up frequency and battery
capacity.

e. Deep Sleep Mode (Both Processors Suspended): Both the
MPU and MCU are in their lowest-power sleep states, with
only the RTC, wake-up timers, and GPIO interrupt
capability active; all peripherals are powered down except
those explicitly configured as wake-up sources. Measured
current consumption: MPU = 15-25 mA @ 5V; MCU =
210440 nA @ 3.3V. The MCU deep sleep current is
dominated by RTC operation (440 nA with RTC, 210 nA
without RTC). Total system power is approximately 75—125
mW, enabling extended battery operation (months to years)
for infrequently-reporting sensor nodes.

f. Shutdown Mode (Minimum Power): The MCU is in
standby mode with only the VBAT domain active; the MPU
is fully powered down and requires a hardware reset to
wake up. Measured current consumption: MCU = 160-210
nA @ 3.3V. Shutdown mode is suitable for long-term
storage or applications with external wake-up triggers
(button press, external interrupt).

3. Clock Frequency Scaling and Dynamic Voltage Scaling:
Dynamic frequency scaling embedded in the QRB2210
MPU involves adjusting the CPU clock frequency. With
computational demand varying from low to medium, for
example, this adjustment helps optimize performance.
Significant power savings are achieved when the operation
is light, and power consumption generally decreases. The
STM32U585 MCU offers several voltage scaling ranges:
Range 1 (VCORE = 1.2V) allows operation at a maximum
frequency of 160 MHz, consuming 31.9 pA/MHz; Range 4
(VCORE = 0.9V) throttles the frequency down to 25 MHz,
where 19.5 pA/MHz results in 39% less power
consumption. Dynamic voltage and frequency scaling
(DVFS) algorithms adapt the system power profile to match
application performance requirements.

D. Software Development Environment and Libraries

The Arduino UNO Q supports multiple programming
paradigms and development workflows, accommodating
developers ranging from beginners to embedded systems
experts.

1. Arduino IDE and Arduino Core: The traditional Arduino
development workflow utilizes Arduino IDE 2.x, which
supports sketch-based C/C++ programming targeting the
STM32U585 MCU running Arduino Core on Zephyr
RTOS. The Arduino IDE provides integrated compilation,
upload, and serial monitor functionality, maintaining
compatibility with thousands of existing Arduino libraries.
The underlying Zephyr RTOS layer provides real-time task
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scheduling, interrupt management, and hardware
abstraction, enabling deterministic timing guarantees.

2. Arduino App Lab Integrated Development Environment:
Arduino App Lab represents the next-generation unified
development  platform, combining MCU  sketch
programming, Linux application development, and Al
model integration within a single web-based interface. App
Lab runs directly on the UNO Q board and is accessed via a
web browser over a local network or USB-C connection,
eliminating the need for an external development PC for
many workflows.

a. Pre-built Applications and Bricks: App Lab includes
ready-to-run example applications demonstrating Al
capabilities: keyword spotting (detecting the “Hey Arduino”
wake phrase), face detection using a USB camera, object
classification, and anomaly detection. Modular “Bricks”
provide plug-and-play functionality that can be added to
custom  applications, including  sensor  drivers,
communication protocols, and Al inference engines.

b. Hybrid Python-Arduino Development. App Lab enables
the development of applications combining Python scripts
executing on Debian Linux (MPU) with Arduino sketches
executing on Zephyr RTOS (MCU), communicating via the
Bridge RPC (Remote Procedure Call) library. This
architecture enables high-level Python logic to access Linux
services (network communication, file I/0, Al inference)
while maintaining real-time sensor control via Arduino
sketches.

3. Linux Command-Line Development: Advanced
developers can access the full Debian Linux environment
via an SSH connection, enabling traditional command-line
workflows. The Python 3.x environment with the pip
package manager supports the installation of machine
learning frameworks (TensorFlow, PyTorch, scikit-learn),
computer vision libraries (OpenCV, PIL), scientific
computing libraries (NumPy, SciPy, pandas), and web
frameworks (Flask, Django). C/C++ development is
supported via the GCC compiler toolchain with the CMake
build system, enabling high-performance  native
applications.

4. Supported Programming Languages and Frameworks:

a. C/C++ (Arduino Sketches): Traditional Arduino sketch
programming targeting the MCU subsystem with access to
real-time GPIO, PWM, ADC, and communication
peripherals.

b. Python: A high-level scripting language executing on the
Linux MPU, enabling rapid prototyping and AI/ML
application development. Supported Python libraries
include TensorFlow, PyTorch, OpenCV, NumPy, SciPy,
pandas, scikit-learn, matplotlib, serial (pySerial), and GPIO
control libraries.
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c¢. JavaScript/Node.js: Web application development and
IoT protocol implementation (MQTT, HTTP, WebSocket)
for cloud-connected applications.

IV.RESULTS AND DISCUSSION

In Figure 2, the Arduino UNO Q is a heterogeneous multi-
processor, with two different computational blocks. The
subsystem on the left uses the Qualcomm Dragonwing-
QRB2210 microprocessor, which features a quad-core
ARM Cortex-A53 CPU cluster (each core operates at 2.0
GHz and includes a 32-KB independent L1 instruction
cache and a 32-KB L1 data cache). The L2 cache is shared
among all four cores, providing 512 KB of storage space.
Since the Qualcomm Adreno 702 GPU is integrated in the
same package as the Spectra 340L Image Signal Processors
(ISPs), WiFi and Bluetooth are hardware-accelerated by the
integrated motherboard silicon (up to 845 MHz). Entity
recognition is rendered using efficient dual-subclass
missiles provided by Joban Hangxu through its entry into
this field-combining both still photos and videos. The
Qualcomm Dragonwing-QRB2210 microprocessor’s stereo
camera setup utilizes up to 160K colors to sample an image.
High-performance Sony Spectra ISPs are fully utilized for

d. Rust: A systems programming language providing
memory safety guarantees without garbage -collection
overhead, supported via the Cargo package manager and
Zephyr RTOS bindings.
image processing. Combining data from a top-down
approach results in full scenery video generation.

Streamcorp workers diligently worked on this new vista
until all video editing software ran smoothly without error.
The MongoDB write-up indicates that with built-in
individual L1 data and instruction-level caches (32 KB for
each processor core), the system uses a common L2 cache
(512 KB). The system’s physical components also include
the 4-core Qualcomm Snapdragon 810 SoC (System on
Chip) with a 2.0 GHz clock frequency, an Adreno 430 GPU
running at 550 MHz for high-level audio processing by
integrating CAPE (Communication Accelerator Processing
Elements) from Tensilica into its audio circuitry. It also
features dual camera engines for stereo capture, courtesy of
Sony Spectra and Aptina’s technical team at Lehi, Utah.
This is part of a project to implement system software
capable of operating under RTOS kernel drivers rather than
being implemented directly on the hardware.

Arduino UNO Q Timing Diagram
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Fig.2 Arduino UNO Q Timing Diagram — Clock Synchronization and Inter-Processor Communication

Provided by Sony, the QVR2203 sensor chip’s OIS (Optical
Image  Stabilization) accelerates image capturing
effectively. Although slightly less efficient in its
segmentation of overlapping blocks (496 x 314 pixels), the
system exhibited none of the failings typically observed-
issues such as negligence in specifying level signals for
systems controlled entirely by power rails.

The right subsystem consists of the Nordic nRF52840-LE Q
SoC, which features a 32-bit ARM Cortex-M4 CPU with an
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independent L1 instruction cache (32 KB for each core) and
a 32-KB L1 data cache, along with a unified 256-KB L2
cache. Additional enhancements include 2 MB of flash
memory and a low-cost BLE wireless LAN interface. The
Qualcomm Dragonwing-QRB2210 microprocessor’s stereo
camera setup uses around 16 million bits to capture an
image. High-performance Sony Spectra ISPs are utilized
fully to process these images. Combining data into an
evolving sequence produces full-screen video material.
Streamcorp workers continued to work diligently until all
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video editing software ran smoothly. MongoDB was
instantiated today, with individual L1 data and instruction-
level caches within the 512 KB common L2 cache. The
system’s other physical components include the 2 GHz
Qualcomm Snapdragon 810 SoC, an Adreno 430 GPU at
550 MHz, and dual camera engines for stereo capture,
courtesy of Sony Spectra and Aptina technology teams at
their Lehi, Utah facility.

The OIS on the QVR2203 sensor chip, supplied by Sony,
results in lower performance and increased power
consumption due to a predicted 10-year lifespan loss. The

system performed well, though not at maximum efficiency,
as only four of its segments overlapped (496 x 314 pixels).
However, it exhibited none of the typical errors observed in
systems controlled by DCV signals. At every stage, the
system infiltrates the bandwidth architectures of both
software and hardware, advancing towards linked
debugging, as envisioned by Yann Le Cun. Fabien has
demonstrated how modern debugging tools lower the
standard kernel developers must meet, making it easier for
newcomers to engage in interesting projects and apply new
techniques.

Arduino UNO Q Dual-Processor Architecture

Pouer Mgmt Unit

Qualcomm QRB2210 MPU

Clock Distribution
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Fig.3 Arduino UNO Q Heterogeneous Dual-Processor System Architecture

Figure 3 illustrates the timing diagram for clock
distribution, processor synchronization, and communication
timing across the Arduino UNO Q heterogeneous
architecture. The QRB2210 MPU main clock operates at 2.0
GHz with a 500 ps period, supporting dynamic frequency
scaling down to 400 MHz during low-utilization periods.
The CPU has an 8-stage pipeline: Fetchl (F1), Fetch2 (F2),
Decode (D), Issue (I), Executel (El1), Execute2 (E2),
Memory (M), and Write-Back (WB).

When instruction dependencies allow, dual-issue
superscalar execution capability is demonstrated in four
consecutive clock cycles. The Adreno 702 GPU operates at
845 MHz, with a frequency ratio of 2.37:1 compared to the
CPU. Independent GPU scheduling enables concurrent
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graphics and AI workloads alongside CPU tasks. The
STM32U585 MCU operates at 160 MHz, with a frequency
ratio of 12.5:1 relative to the MPU, providing slow but
deterministic real-time operation for safety-critical sensors
and controls.

The LPDDR4X memory interface is shared by both
processors and operates at 1804 MHz DDR (902 MHz
single-ended). Reed-Solomon product codes are used for all
error protection. Each read operation takes time
proportional to the page size multiplied by the number of
sectors. A read must wait for a write to complete, and a
write must wait for access requests to be resolved before
proceeding. Inter-processor communication (IPC) via
Bridge RPC adds a 10-50 ps delay per message round-trip,
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making it suitable for non-real-time data transmission but
unsuitable for time-sensitive event synchronization.

GPIO interrupt propagation from the MCU to the MPU for
wake-up incurs a delay of 100-500 ns, representing minimal
overhead for edge-triggered sensor interrupts. Periodic
synchronization points (indicated by vertical dashed lines)

maintain coherence between the independent clock
domains. The clock frequency ratios enable efficient power
scaling: reducing the CPU from 2.0 GHz to 800 MHz
decreases power consumption by approximately 75%, while
the MCU operating at 160 MHz consumes less than 1% of
the MPU’s power during equivalent workloads.

Cortex-A53 CPU Datapath Architecture
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Fig.4 Arduino UNO Q Cortex-A53 CPU Datapath and 8-Stage Pipeline Architecture

Figure 4 presents the CPU datapath diagram, detailing the
internal microarchitecture of the quad-core ARM Cortex-
AS53 processor that forms the computational backbone of the
Arduino UNO Q MPU subsystem. The instruction cache (I-
cache) comprises 32 KB per core, organized as a 4-way set-
associative cache with 64-byte cache lines, reducing
instruction fetch latency from main memory (greater than
100 ns) to cache hit latency (~4 ns).

The data cache (D-cache) similarly provides 32 KB per core
with a 4-way set-associative organization, storing recently
accessed data and intermediate computation results. The
unified L2 cache (512 KB, shared across four cores) reduces
memory pressure on the main LPDDR4X SDRAM by
capturing working sets that exceed the L1 capacity.

The 8-stage pipeline enables overlapped instruction
execution: Fetchl retrieves instructions from the I-cache or
memory; Fetch2 begins decode preparation; the Decode
stage determines instruction type and operand requirements;
the Issue stage schedules up to two instructions per cycle
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when data dependencies permit (dual-issue superscalar
capability); Executel/Execute2 stages perform arithmetic,
logical, and shift operations; the Memory stage manages
load/store operations accessing the D-cache or L2/main
memory; and the Write-back stage commits execution
results to the register file. The 64-bit ALU performs integer
arithmetic (addition, subtraction, multiplication, division)
and logical operations (AND, OR, XOR, NOT) on operand
pairs from the 31-register general-purpose register file
(registers R0-R30), plus special-purpose registers SP (R31,
stack pointer), LR (link register), and PC (program counter).
The floating-point unit (FPU) executes IEEE 754-compliant
single-precision (32-bit) and double-precision (64-bit)
floating-point operations, including addition, multiplication,
division, and square root.

The NEON SIMD unit extends the 128-bit data path,
enabling vector operations on packed data: 4 x 32-bit
integers, 8 x 16-bit integers, 16 x 8-bit integers, or mixed
floating-point/integer vectors. The branch prediction unit
with the branch target buffer (BTB) reduces branch
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misprediction penalties by predicting likely branch
destinations before branch condition resolution. The
memory management unit (MMU), with a translation
lookaside buffer (TLB), virtualizes physical memory
addresses to logical address space, enabling protected
multitasking and virtual memory.

The TLB typically caches 32-64 translation entries covering
approximately 4 MB of virtual address space with an access
latency of about 5 ns. The interconnect fabric arbitrates
multiple simultaneous data flows: instruction fetches from
the I-cache, data reads/writes from the D-cache, L2 cache
coherency traffic, and main memory accesses. These all
flow through a sophisticated crossbar network, maintaining
data coherency across the four-core cluster.

A. Architectural Framework Analysis

The heterogeneous architecture of the Arduino UNO Q
fundamentally differs from traditional single-processor
Arduino platforms in several critical aspects:

1. Asymmetric Task Allocation: The dual-processor model
enables optimal resource allocation, with
computationally intensive, latency-insensitive workloads
(Al inference, image processing, video encoding)
executed on the powerful but high-power QRB2210
MPU. Time-critical, latency-sensitive operations (sensor
sampling, motor control, interrupt handling) are
executed on the deterministic STM32U585 MCU, which
consumes less than 5% of the MPU’s power.

2. Heterogeneous Acceleration: The integrated Adreno 702
GPU, dual ISPs, and Hexagon DSP provide specialized

capture and preprocessing; and the DSP accelerates
signal processing and audio workloads. This
heterogeneous acceleration achieves 5-50% performance
improvements for specialized workloads compared to
pure CPU execution.

3.Clock Domain Crossing (CDC): The 12.5:1 frequency
ratio between the MPU (2.0 GHz) and the MCU (160
MHz) requires sophisticated synchronization
mechanisms to prevent metastability and data coherency
violations. CDC logic implemented in the interconnect
fabric ensures multi-cycle safe handshakes between
clock domains, introducing a 10-50 nanosecond
overhead per synchronization event.

4.Memory Hierarchy: The three-level memory hierarchy
(L1 cache of 32 KB per core, L2 cache of 512 KB
shared, and main SRAM of 2 GB) exploits spatial and
temporal locality principles. Frequently accessed
instructions/data reside in the fast L1 cache (4 ns
latency), working sets in the L2 cache (10-20 ns
latency), and large datasets in the main SRAM (50-100
ns latency). This hierarchy reduces average memory
access latency from over 100 ns (main memory) to
approximately 10 ns effective latency when considering
cache hit rates typically exceeding 90% for well-
designed applications.

The Arduino UNO Q architecture represents a convergence
of educational accessibility (maintaining the familiar
Arduino programming model) with professional-grade
heterogeneous computing capabilities that were previously
available only on expensive, dedicated platforms. This
positions the platform as suitable for research, rapid
prototyping, and production edge AI deployments across

acceleration for specific computational patterns. The robotics, autonomous systems, IoT, and industrial
GPU accelerates parallel matrix operations fundamental automation domains.
to neural network inference; ISPs accelerate image
TABLE I KEY MATHEMATICAL COMPARISONS BETWEEN DIFFERENT VARIANTS OF
ARDUINO UNO BOARD TILL DATE LAUNCHED IN MARKET BY ARDUINO INC
. UNO UNO R4 Improvement
Metric R3 WiFi UNOQ Factor (Q vs R3)
CPU Clock Speed 16 MHz 48 MHz 2.0 GHz 125x%
CPU Cores 1 1 4 4x
System RAM 2 KB 32 KB 2GB (Izi;))()O,OOO 1,000,000%
MCU Real-Time RAM - - 786 KB -
Flash Storage 32 KB 256 KB 16 GB 500,000x
GPU Clock None None 845 MHz New Capability
ISPs (Vision Accelerators) 0 0 2 New Capability
. 0.32
Peak Memory Bandwidth MB/ns 0.64 MB/ns 2.4 MB/ns 7.5%
Estimated Al Inference Speedup | Baseline ~2-3x ~12.5% Over 12x faster
In Table I, comparisons highlight the significant 1. CPU Clock Speed: The UNO Q’s Qualcomm

performance and architectural improvements of the Arduino
UNO Q compared to previous Arduino UNO variants (UNO
R3 and UNO R4 WiFi). Below is an explanation of the key
metrics and their implications:

AJES Vol.14 No.2 July-December 2025

18

Dragonwing QRB2210 features a quad-core ARM Cortex-
AS53 processor running at 2.0 GHz, which is approximately
125 times faster than the 16 MHz single-core ATmega328P
in the UNO R3, and over 40 times faster than the 48 MHz
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Cortex-M4 in the UNO R4. This substantial increase in
clock speed and multicore architecture enables the UNO Q
to handle much more complex computational tasks and Al
workloads.

2. CPU Cores: While the UNO R3 and R4 have single-core
MCUs, the UNO Q integrates four Cortex-A53 cores. This
parallelism allows the board to process multiple tasks or
threads  concurrently, improving throughput and
responsiveness.

3. System RAM: The UNO Q has 2 GB of LPDDR4X RAM,
which is a million times larger than the R3’s 2 KB SRAM
and vastly greater than the R4’s 32 KB SRAM. This
increase supports larger datasets, more complex Al models,
and multitasking between the Linux OS and the real-time
subsystem.

4. MCU Real-Time RAM: The STM32U585 real-time MCU
subsystem in the UNO Q includes 786 KB SRAM for
deterministic and low-latency control tasks, a feature
unavailable in older Arduino boards.

5. Flash Storage: The UNO Q’s 16 GB onboard eMMC
flash (upgradeable from the R4’s 256 KB and R3’s 32 KB
flash) allows for the storage of large operating system
images (e.g., Debian Linux), multiple AI models, and user
applications without external storage.

6. GPU Clock: The presence of the Adreno 702 GPU,
clocked at 845 MHz, introduces hardware acceleration
capabilities for graphics rendering and Al inference,
features absent from prior Arduino models.

7. Image Signal Processors (ISPs): Two ISPs provide
hardware acceleration for multi-camera vision processing
(e.g., image capture and preprocessing), enabling computer
vision tasks that were not feasible on earlier Arduino
boards.

8. Peak Memory Bandwidth: The UNO Q offers a
theoretical peak memory bandwidth of 2.4 MB/ns, roughly
7.5 times the UNO R3’s 0.32 MB/ns, reducing memory
bottlenecks and enabling faster data transfers for Al
computation.

9. Estimated Al Inference Speedup: Overall Al workload
processing can be approximately 12.5 times faster on the
UNO Q compared to the UNO R3, thanks primarily to CPU
frequency increases, multiple cores, hardware accelerators,
larger memory, and improved memory bandwidth.

V. CONCLUSION

The research concludes that the Arduino UNO Q represents
a significant evolutionary leap in embedded and edge Al
computing by integrating the Qualcomm Dragonwing
QRB2210 heterogeneous multi-core processor with a real-
time STM32U585 microcontroller subsystem. This dual-
brain architecture enables the simultaneous execution of
computationally demanding Al workloads with precise real-
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time control, overcoming the limitations of prior Arduino
UNO boards. The UNO Q’s substantial improvements in
CPU clock speed (up to 2.0 GHz), massively expanded
RAM (2 GB LPDDR4X), hardware Al accelerators (Adreno
702 GPU, Hexagon DSP, dual ISPs), and extensive
peripheral connectivity empower rapid prototyping and
deployment of complex vision, sound, and sensor fusion
applications on a single board.

Furthermore, the UNO Q benefits from seamless integration
with advanced software ecosystems, including TensorFlow
Lite, Edge Impulse, and Arduino App Lab, supporting
optimized AI model deployment and mixed-language
development workflows that combine Arduino sketches and
Linux Python applications. Power management features
enable efficient operation across normal, WiFi-enabled, and
deep sleep modes, facilitating deployment in battery-
powered IoT and industrial edge use cases. The
comprehensive architectural enhancements translate into a
greater than 12x increase in Al inference throughput
compared to preceding Arduino UNO models, enabling
sophisticated real-time autonomous, industrial, and
interactive systems that were previously out of reach for
typical microcontroller platforms. By consolidating rich Al
processing, robust real-time control, and familiar Arduino
development tools within a single, open-source hardware
platform, the Arduino UNO Q stands poised as a versatile
foundation for education, research, and product innovation
in the rapidly growing domain of edge Al and IoT. This
work highlights the UNO Q’s potential to democratize
access to powerful embedded Al capabilities and accelerate

innovation across maker, academic, and professional
communities worldwide.
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