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Abstract - Potato leaf diseases pose a significant threat to global 
food security by reducing crop yields and economic 
productivity. Traditional manual inspection methods are often 
inefficient and error-prone, particularly in developing 
countries. Automated deep learning approaches provide a 
promising alternative for accurate and timely disease detection. 
This study develops a lightweight deep convolutional neural 
network (DCNN) for classifying potato leaf diseases, including 
early blight, late blight, and healthy leaves, while ensuring high 
accuracy, efficiency, and deployability on edge devices. A dataset 
of 2,152 potato leaf images, sourced from Kaggle, was 
preprocessed, augmented, and partitioned into 80% training, 
10% validation, and 10% testing sets. A custom DCNN 
architecture (2.2M trainable parameters) was designed and 
compared against Xception, ResNet50, and InceptionV3 using 
precision, recall, F1-score, specificity, accuracy, and Cohen’s 
Kappa metrics. The proposed model outperformed existing 
architectures, achieving 97.21% accuracy, 93.92% F1-score, 
95.83% precision, 92.33% recall, 98.38% specificity, and 
95.00% Kappa score, with a compact size of 25.6 MB. 
Deployment on a Streamlit-based web application 
demonstrated real-time classification capabilities, achieving 
near-perfect accuracy (99.99%) for early and late blight 
detection. The lightweight DCNN offers an efficient, accurate, 
and deployable solution for potato disease classification, 
suitable for edge devices such as smartphones. This system 
empowers farmers with rapid, automated diagnostics, enabling 
timely interventions to mitigate crop losses. Future work will 
focus on extending the model to additional potato species and 
optimizing deployment for mobile platforms. 
Keywords: Potato Leaf Diseases, Deep Convolutional Neural 
Network (DCNN), Disease Classification, Edge Devices, 
Precision Agriculture 

I. INTRODUCTION

The primary cause of infections in plants is food insecurity 
[1], [2]. Plant disease detection and classification remain 
major challenges for farmers. Therefore, it is essential to 
identify diseases in both leaves and fruits. Automatic 
classification of plant diseases based on their unique 
symptoms would greatly benefit agricultural scientists and 
farmers. One of the greatest problems in agricultural and 
horticultural science is early disease identification. Plant 
diseases are significant because they affect not only animals 

but also humans, and they have the potential to substantially 
reduce crop yields. 

The detection and classification of diseases are critical tasks 
[3], [4]. Farmers have traditionally relied on visual 
observation to identify plant diseases. Researchers have 
applied image processing techniques to detect diseases more 
quickly and accurately, particularly in their early stages, thus 
enabling effective control. 

The potato (Solanum tuberosum), a starchy tuber native to 
the Americas, belongs to the Solanaceae (nightshade) family. 
Potato diseases include bacterial wilt, in which all plant 
sections exhibit visible symptoms, and Septoria leaf spot, 
which begins as tiny, irregular spots on lower leaves and 
gradually spreads upward. The spots typically have a dark 
border with a gray center. In addition, insect damage, viral 
infections, and fungal diseases such as early and late blights 
contribute to low potato yields. Potatoes are widely used as a 
thickener in sauces and baking and are highly digestible, 
providing niacin, thiamin, protein, and vitamin C [5]. 

Potato is a significant food crop cultivated across Nigeria. As 
a source of vitamins, proteins, and carbohydrates, it is 
considered essential in both developed and developing 
countries. Originating from Peru and endemic to South 
America, potato ranks as the fourth most important food 
source worldwide after wheat, rice, and maize [6].  

The main destinations of potato exports from Nigeria include 
Ghana ($547k), Niger ($213k), Kuwait ($1.31k), Sweden 
($1.25k), and Benin ($920). Between 2019 and 2020, the 
fastest-growing export markets for Nigerian potatoes were 
Ghana ($547k), Niger ($27.9k), and Kuwait ($1.31k). 

Machine vision and artificial intelligence (AI) [7]-[13], as 
noted in [14], have been applied to various domains [15]-
[21], including biomedical applications [1], [20].  
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Convolutional Neural Networks (CNNs), one of the most 
widely explored deep learning approaches, have been 
successfully applied to many computer vision tasks [22], 
including plant disease recognition [23]-[25]. However, as 
reported in [26], [27], most CNN applications focus primarily 
on the classification or identification of diseases and pests. 
For example, Khan et al., [24] used different CNN structures 
to classify plant diseases, achieving accuracies of 98.33% 
and 90.85% for mango and potato leaf infection classification 
with AlexNet and shallow CNNs, respectively [29]. 
Similarly, CNNs have been employed to classify leaf diseases 
in tomato, rice, and cucumber [30]-[32] and to detect weeds 
in soybean crops [33]. 

Since many diseases share similar symptoms and crops may 
be affected by multiple infections, accurate identification 
typically requires skilled experts. This makes it difficult for 
farmers to select appropriate nutrients or pesticides, thereby 
complicating disease management. To address this, 
researchers have applied CNNs to classify potato leaf 
diseases, with promising results. However, for practical 
impact, such models must be deployed on web applications 
or edge devices to enable farmers to automatically identify 
and classify potato leaf diseases. 

This work proposes a deep learning system for the automatic, 
fast, and accurate classification of sweet potato leaf diseases, 
deployable on edge devices. The main contributions are as 
follows: 

1. Improved classification accuracy and performance
metrics for potato leaf disease detection with the
proposed algorithm.

2. Enhanced classification accuracy for healthy potato leaf 
images.

3. A lightweight model suitable for hardware deployment.
4. A web application capable of continuous classification

of input images.
The remainder of this paper is structured as follows:  
Section 2 presents the related work, Section 3 explains the 
methodology, Section 4 discusses the results, and Section 5 
concludes the paper. 

II. REVIEW OF LITERATURE

A Mahalanobis distance classifier for classifying potatoes in 
terms of size, shape, and other defects was presented in [34]. 
The distinction between defects and diseases was made using 
eccentricity and central moments. Potatoes with irregular 
shapes were further identified using Fourier descriptors. In 
[35], the authors worked on potato classification using co-
occurrence matrices and histograms to extract features for 
each RGB and HSV channel. A genetic algorithm was 
employed for feature selection, and classification was 
performed using a nearest neighbor approach. Detection rates 
of 83.3%, 88.5%, and 84.7% were achieved for good, rotten, 

and green potatoes, respectively. In [36], a real-time method 
was developed to identify atypical potatoes. A linear 
discriminant analysis was performed using Fourier 
descriptors and geometrical characteristics as input to find 
the most relevant features. Experimental results showed 
98.8% accuracy for regular potatoes and 75% for deformed 
potatoes. 

In [37], a graph-cut approach was proposed to recognize 
potato leaf diseases and assess their severity. The method 
incorporated the graph-cut algorithm, Otsu thresholding, 
color statistical thresholding, local binary patterns, and 
classifiers. Results showed that the SVM classifier, combined 
with LBP, attained the highest accuracy of 92.1%. In [38], an 
algorithm was proposed to detect and classify four potato leaf 
diseases, achieving 97.2% accuracy.  

Similarly, the methodology in [39] outperformed other 
techniques, with an average detection accuracy of 97.73% 
across various potato disease types. In [40], a system based 
on AdaBoost was introduced to discriminate between 
blemished and non-blemished pixels.  

 After extracting color and texture features, the AdaBoost 
algorithm automatically selected optimal features for 
classification and performed effectively. The study in [41] 
proposed a methodology to classify potato leaf diseases and 
distinguish them from healthy leaves, achieving 97.89% 
accuracy.  

The authors fine-tuned a VGG16 architecture and compared 
it with existing methods. Furthermore, [42] presented a 
system to categorize potato patches into five distinct classes. 

III. MATERIALS AND METHODS

Fig. 1 Proposed Methodology 

A. Image Acquisition

The dataset used for this research was obtained from the Plant 
Village dataset, which contains approximately fifteen (15) 
categories of plant diseases with a total of 20,693 images. 
However, this study only considered three (3) of those 
categories, utilizing 2,152 images. The distribution of images 
across the three categories is shown in Fig. 2 as follows: 
healthy potato leaves - 152, early blight - 1,000, and late 
blight - 1,000.
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Fig. 2 Sample Images of Potato Leaf Images 

B. Image Preprocessing

Image preprocessing refers to the process of modifying, 
combining, or removing image data to prepare it for analysis. 
This procedure is also commonly referred to as data cleaning. 

Proficiency in data cleaning is crucial for data scientists and 
machine learning engineers, as the quality of preprocessing 
directly affects the insights that models can extract from the 
data. In this study, the image folders were restructured to 
facilitate ease of use with TensorFlow and Keras helper 
classes. 

C. Image Augmentation

Deep learning tasks [44]-[46] require large amounts of data; 
therefore, it was necessary to augment the existing dataset 
[47]-[50]. The TensorFlow Image Data Generator class was 
used for augmentation. This class was configured to generate 
new images by randomly modifying the original images. The 
modifications applied included cropping, zooming, 
brightening, darkening, elongating, and stretching of the 
original images. 

D. Image Classification

Artificial intelligence (AI), specifically deep learning, has 
been widely employed for numerous applications [51]. 
Convolutional Neural Networks (CNNs) have been utilized 
in several studies for plant disease detection.  

In this work, a lightweight CNN model was developed for the 
classification of sweet potato leaf diseases. 

E. Modeling

The figure 3 shows model architecture used for the research. 

Fig. 3 Proposed Model Architecture 

The architecture has a total of 2,228,131 trainable parameters 
from four (4) convolution layers, four (4) maxpooling layers 
and three (3) dense layers. The Figure 4 shows the filters used 
in each block. 
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Fig. 4 Block View of Proposed Architecture 

The metrics were calculated based on values obtained from 
confusion matrix which can be True Positives (TP) i.e. the 
model correctly predicts a positive class, True Negatives 
(TN) i.e. model correctly predicts a negative class, False 
Positives (FP) i.e model incorrectly predicts a positive class, 
and False Negatives (FN) i.e model incorrectly predicts a 
negative class.  

Precision: This is the ratio between the number of true 
positive outcome and the total number of positive outcomes. 
This is measured with TP and FP as in eq. (1). 

Precision = TP
TP+FP    (1) 

Recall: This is called sensitivity. It is probability that the 
model will correctly identify positive samples, given that 
they are indeed positive. This is measured with TP and FN as 
in eq. (2). 

Recall   =  TP
TP+FN  (2) 

F1 Score: This is the harmonic mean of sensitivity and 
precision, providing a single measure to assess the overall 
quality of binary classification. This is measured with TP, FN 
and FP as in eq.(3). 

F1 Score = 2∗𝑇𝑇𝑇𝑇
2∗𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹  (3) 

Specificity: This is the probability that the model will 
correctly identify negative samples (healthy leaves), given 
that they are indeed negative. This is measured with TN and 
FP as in eq. (4). 

Specificity =  TN
TN+FP   (4) 

Accuracy: This is the percentage of correct predictions. This 
is measured with TP, TN, FN and FP as in eq. (5). 

Accuracy = TP+TN
TP+TN+FP+FN  (5) 

Cohen_kappa_score or K: This is the statistical measure used 
to assess effectiveness of the classification model. This is 
measured with TP, TN, FN and FP as in eq.(6). 

K = 2∗(𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇−𝐹𝐹𝐹𝐹∗𝐹𝐹𝐹𝐹)
(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)∗(𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇)+(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)∗(𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇)    (6) 

IV. RESULTS AND DISCUSSION

A. Results
1. Experimental Setup

This research was implemented using Python 3.7 with 
TensorFlow and Keras frameworks for deep learning tasks, 
and Streamlit for web deployment. The model was executed 
on an HP system with an Intel® Core™ i5 CPU M 540 @ 
2.53 GHz, 8 GB of RAM, running Windows 10 Pro. 

The dataset was split into training, validation, and testing sets 
in an 80:10:10 ratio, comprising 1,722 images for training, 
215 images for validation, and 215 images for testing. 
Training and validation were performed simultaneously, 
while the test set was reserved for later evaluation. The model 
was trained for 25 epochs. The proposed model was built 
using TensorFlow’s Sequential class and other relevant 
classes provided by the TensorFlow library. For comparison, 
the model’s performance was evaluated against ResNet50 
[52], InceptionV3 [53], [54], and Xception [55]. 

2. Model Performance

The accuracy and loss of the proposed model are presented 
in Fig. 5. The training and validation accuracies were both 
97%, while the training and validation losses were 0.09 and 
0.07, respectively. 
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Fig. 5 Graph of Accuracy and Losses (Proposed) 

An accuracy of approximately 98% was achieved on the 
testing dataset. The changes across the three classes are 
presented in the confusion matrix shown in Figure 6. The 
diagonal cells represent correctly classified results, while the 
off-diagonal cells indicate misclassifications. 

The accuracy and losses of InceptionV3 is presented in 
Figure 7 while the changes for the three (3) classes is 
presented in confusion matrix (Figure 8). 

Fig. 6 Confusion Matrix for Classification of Potato Leaf Image Test Data (Proposed) 

Fig. 7 Graph of Accuracy and Losses (Inceptionv3) 
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Fig. 8 Confusion Matrix for Classification of Potato Leaf Image Test Data (Inceptionv3) 

An accuracy of 91% and 93% was obtained for the training 
and validation of the Xception model, with corresponding 
training and validation losses of 0.31 and 0.23. This model 

achieved lower accuracy and higher losses compared to the 
proposed model. The accuracy, losses, and confusion matrix 
of the Xception model are presented in Figs. 9 and 10. 

Fig. 9 Graph of Accuracy and Losses (Xception) 

Fig. 10 Confusion Matrix for Classification of Potato Leaf Image Test Data (Xception) 

An accuracy of 92% was obtained for both training and 
validation, with corresponding training and validation losses 
of 0.32 and 0.33. This model achieved lower accuracy and 
higher losses compared to the proposed model. The accuracy 

and loss graphs of ResNet50 are presented in Fig. 11, and the 
classification results for the three classes are shown in the 
confusion matrix in Fig. 12. 
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Fig. 11 Graph of Accuracy and Losses (Resnet50) 

Fig. 12 Confusion Matrix for Classification of Potato Leaf Image Test Data (Resnet50) 

3. Comparison with Existing Models

A summary of comparison of proposed model with existing models (Table I). 

TABLE I COMPARISON WITH STATE-OF-ART MODELS 
Metrics Proposed Xception ResNet50 InceptionV3 

Accuracy (%) 97.21 95.35 90.23 0.23 
F1 Score (%) 93.92 92.60 85.49 4.25 
Precision (%) 95.83 94.57 85.79 83.30 
Recall (%) 92.33 91.00 85.44 85.44 
Kappa score (%) 95.00 91.68 82.63 82.75 
Specificity (%) 98.38 97.22 94.41 4.65 

Size (MB) 25.6 81.1 81.1 84.3 

From Table I, the performance of four models-Proposed, 
Xception, ResNet50, and InceptionV3-was evaluated using 
multiple metrics. The highest accuracy of 97.21% was 
obtained for the Proposed model, while Xception achieved 
95.35% accuracy. Both ResNet50 and InceptionV3 recorded 
accuracy scores of 90.23%. The Proposed model also 
demonstrated superiority in F1 score with the highest value 
of 93.92%, followed by Xception at 92.60%, and 
InceptionV3 at 85.49%. 

In terms of precision, the Proposed model outperformed the 
others with 95.83%, followed by Xception at 94.57%, 
InceptionV3 at 85.79%, and ResNet50 with the lowest 
precision of 83.30%. The recall metric similarly highlighted 
the Proposed model's strength, achieving 92.33%, with 
Xception at 91.00%, and both InceptionV3 and ResNet50 at 
85.44%. For Cohen’s Kappa, the Proposed model attained the 
highest score of 95.00%, followed by Xception at 91.68%, 
ResNet50 at 82.75%, and InceptionV3 at 82.63%. The 
Proposed model also achieved the highest specificity at 
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98.38%, while Xception scored 97.22%, and both 
InceptionV3 and ResNet50 recorded around 94%. 

Regarding model size, the Proposed model was the most 
compact at 25.6 MB, whereas Xception and ResNet50 were 
both 81.1 MB, and InceptionV3 was the largest at 84.3 MB. 
Overall, the Proposed model demonstrated superior 

performance across accuracy, precision, F1 score, recall, 
Kappa score, specificity, and size metrics. Xception 
performed well in most metrics, while ResNet50 and 
InceptionV3 showed comparatively lower performance in 
several areas. Table II presents a comparison of existing 
approaches with the developed system. 

TABLE II COMPARISON OF DEVELOPED SYSTEM WITH EXISTING SYSTEM 

Author Dataset Technique Accuracy (%) Size 
(MB) 

Sholihati et al., (2020) Potatoes VGG 16, VGG19 CNN 91 - 

Hou et al., (2021) Potato Leaves KNN, SVM , ANN,      
Random Forest Classifier 97.4 - 

Islam and Sikder (2022) Potato Leaves CNN 100 - 

Nishad et al., (2022) Potato Leaves VGG 16, VGG19 and 
ResNet50 97 - 

Samatha et al., (2023) Potatoes Modified SVM and CNN 97-99 - 

Oishi et al., (2021) Abnormal & Healthy 
Potato Leaves Deep Learning Models 96.7 - 

Authors (2023) Potato Leaves & Healthy Proposed System ~100 5.6 

The comparison is based on technique, dataset, and accuracy 
on test samples to validate system performance. This paper 
used both similar and dissimilar techniques, as well as a 
similar dataset, for comparison. 

It was observed that [56] used VGG16 and VGG19 CNN 
models on a potato dataset, achieving 91% accuracy; the 
model size was not specified. Reference [37] employed 
KNN, SVM, ANN, and Random Forest Classifier techniques 
on a potato leaf dataset, achieving 97.4% accuracy, with no 
model size reported. Reference [57] focused on potato leaves 
and achieved 100% accuracy using CNN; the model size was 
unspecified. Reference [58] utilized VGG16, VGG19, and 
ResNet50 on a potato leaf dataset, achieving 97% accuracy; 
the model size was not mentioned. Reference [59] applied 
modified SVM and CNN techniques on a potato dataset, 

obtaining accuracy in the range of 97-99%, with no model 
size reported. Reference [60] employed deep learning models 
on a dataset containing abnormal and healthy potato leaves, 
achieving 96.7% accuracy; the model size was unspecified. 
In contrast, the proposed system achieved approximately 
100% accuracy for potato leaves and healthy samples, with a 
model size of 25.6 MB. 

4. Deployment

The deployment to a web application was performed using 
Streamlit-a popular Python framework for deploying deep 
learning models on the web without requiring interaction 
with frontend code. The interface displaying the outputs of 
test samples is shown in Fig.13. 

Fig. 13 System Outputs for Test Samples 
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The developed web application was also tested with test data and the accuracy obtained is presented in figure 14.   

Fig. 14 Accuracy of Models for Classes 

Two different leaves from the three categories were selected 
to compare the proposed model with ResNet50, InceptionV3, 
and Xception models. The leaves were tested using the 
models on a web application interface. The application 
displayed both the category of the leaf and the accuracy of 
the selected model. 

While testing a leaf image of early blight, the proposed model 
recorded an accuracy of 99.99%, compared to 53.58% for 
InceptionV3, 87.75% for ResNet50, and 95.18% for 
Xception. Similarly, while testing a leaf image of late blight, 
the proposed model recorded an accuracy of 99.85%, 
compared to 99.996% for InceptionV3, 99.99% for 
ResNet50, and 99.99% for Xception. 

However, when a healthy leaf image was tested, the proposed 
model recorded an accuracy of 97.48%, compared to 97.73% 
for InceptionV3, 95.13% for ResNet50, and 73.50% for 
Xception. 

V. DISCUSSION

This section evaluates the performance of the proposed 
lightweight convolutional neural network (CNN) for potato 
leaf disease classification by comparing it with three widely 
used deep learning models: Xception, ResNet50, and 
InceptionV3. The comparative performance analysis, based 
on the following standard evaluation metrics, is presented as 
follows: 

A. Classification Accuracy

The proposed CNN model achieved the highest classification 
accuracy of 97.21%, outperforming Xception (95.35%) and 
ResNet50 (90.23%). The result recorded for InceptionV3 
(0.23%) appears to be an outlier and may indicate issues such 

as poor model convergence or misconfiguration during 
training. The superior accuracy of the proposed model 
highlights its strong capability in correctly identifying 
disease classes in potato leaves. 

B. F1 Score, Precision, and Recall

The F1 score, which reflects the harmonic mean of precision 
and recall, further supports the model's robustness. The 
proposed model attained the highest F1 score of 93.92%, with 
precision and recall values of 95.83% and 92.33%, 
respectively. In contrast, Xception followed closely but 
slightly underperformed across all three metrics. ResNet50 
showed a marked decline in effectiveness, and InceptionV3’s 
extremely low F1 score (4.25%) reiterates the earlier 
indication of ineffective learning or improper data 
processing. 

C. Cohen’s Kappa Score

Cohen’s Kappa Score, a measure of inter-rater agreement, 
also favored the proposed architecture, which achieved a 
score of 95.00%, indicating strong consistency between 
predicted and actual labels. Xception and ResNet50 recorded 
91.68% and 82.63%, respectively, while InceptionV3 yielded 
a comparable result to ResNet50 at 82.75%. 

D. Specificity

In terms of specificity, the proposed model again led with 
98.38%, reflecting a high ability to accurately identify non-
diseased (healthy) samples. This performance surpassed that 
of Xception (97.22%) and ResNet50 (94.41%). 
InceptionV3’s specificity was notably low (4.65%), 
reinforcing concerns regarding its suitability for this task 
without additional optimization. 
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E. Model Size and Efficiency

One of the significant advantages of the proposed CNN 
model lies in its compact size. At 25.6 MB, it is substantially 
smaller than the other models: Xception and ResNet50 (both 
81.1 MB) and InceptionV3 (84.3 MB). This size efficiency 
enhances the model’s applicability for deployment on low-
resource platforms, such as mobile devices and embedded 
systems commonly used in agricultural environments. 

VI. CONCLUSION

In this research, a deep learning-based system was developed 
for the identification and classification of sweet potato leaf 
diseases. The proposed model was implemented on a web 
application. The study was conducted using a Kaggle dataset, 
and the results showed that the developed system achieved 
high recognition accuracy on the publicly available dataset. 
The system demonstrated a validation accuracy of 97% at 14 
epochs. The experiments also indicated that the proposed 
model outperformed several existing models in predicting the 
three classes of sweet potato leaf diseases, including in terms 
of model size. For future research, the development of 
recognition systems for other potato species will be 
considered. Furthermore, implementation of the recognition 
system for sweet potato leaf diseases on edge devices, 
especially mobile phones, will be explored to enable easy 
access and convenience. Consequently, the system can be 
effectively used for disease detection and classification of 
sweet potato leaves, assisting agriculturists in quickly and 
accurately identifying affected plants for timely treatment. 
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