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Abstract - The procedure of image segmentation involves 
splitting images into distinct components to discern similarities 
or differences between regions. This facilitates the quantitative 
and/or qualitative analysis of lesions, thereby enhancing the 
reliability and accuracy of medical diagnoses. Traditionally, 
medical image segmentation was performed manually, slice by 
slice, requiring a high level of expertise to accurately define 
boundaries for individual areas. This manual process is time-
consuming and error-prone. Currently, several deep learning 
methods have achieved significant advancements in image 
segmentation, surpassing the accuracy of traditional 
approaches. This study reviewed the effectiveness of deep 
learning models in accurately segmenting images of brain tumor 
patients. A search of the PubMed and Google Scholar 
databases, as well as the Asian Journal archives, was conducted 
to retrieve recent literature using the keywords: deep learning, 
Magnetic Resonance Imaging, image segmentation, and medical 
image processing. References from relevant literature were also 
reviewed to obtain additional sources. A critical and direct 
assessment of deep learning technologies on tumor MRI images 
was subsequently performed using these sources. The Dice 
scores served as metrics for evaluating the performance of the 
deep learning models. Based on the Dice scores, it can be 
inferred that deep learning models such as 3D FCNs, ResNet 
models, AGSE-VNet models, and encoder-decoder CNN 
architectures exhibit high segmentation accuracy in brain 
tumor images. The promising results demonstrated by deep 
learning-based segmentation approaches underscore their 
potential to enhance diagnostic capabilities in brain tumor 
detection and analysis. 
Keywords: Image Segmentation, Deep Learning, Brain Tumor, 
Magnetic Resonance Imaging (MRI), Dice Scores 

 
I. INTRODUCTION 

 
Image segmentation involves processes that split images into 
their constituent parts or components. It is an essential and 
challenging aspect of image processing that has gained 
significant importance in the domain of image understanding 
[1], [2]. Segmentation is critical for distinguishing the subject 
of an image from its surroundings. Current trends in image 
segmentation emphasize improved speed and accuracy. 
Innovations leveraging new technologies and theories have 
led to the development of versatile segmentation algorithms 
applicable across various image types [3]. 
 

High-resolution imaging, which provides radiologists with 
multi-oriented views of soft tissues, diseases, and human 
organs in three dimensions, forms the foundation of recent 
imaging modalities [4]. X-rays, Ultrasound Imaging (UI), 
Computed Tomography (CT), Magnetic Resonance Imaging 
(MRI), and Positron Emission Tomography (PET) are the 
primary medical imaging modalities frequently utilized in 
healthcare facilities. Medical images derived from these 
modalities present valuable information that medical 
professionals use to analyze patients’ conditions. 
Consequently, medical images have become the cornerstone 
of physicians’ clinical diagnoses [5]. 
 
Traditional techniques for segmenting medical images, such 
as Edge-Based Segmentation and Region-Based 
Segmentation, were performed manually, slice by slice. 
These methods required a high level of expertise to 
accurately define boundaries for discrete regions and 
exhibited significant intra-observer variability in 
segmentation results. Manual editing is also time-consuming 
and prone to errors [6], [7]. 
 
Deep learning (DL), a subset of artificial intelligence, enables 
computers to understand the world through experience, 
learning in terms of a hierarchy of concepts. Recent advances 
in deep learning have achieved remarkable feats in visual 
pattern recognition. DL offers the significant advantage of 
learning discriminative features, thereby improving 
classification accuracy. It employs recurrent learning and 
correction to uncover patterns and hidden rules in images [8], 
[9]. Deep learning-based image segmentation excels in both 
accuracy and speed, outperforming traditional machine 
learning and computer vision methods. When applied to 
medical images, DL proves invaluable for confirming tumor 
sizes, quantifying treatment effects, and significantly 
reducing doctors’ workloads [10]. 
 
For this review, a search of the PubMed and Google Scholar 
databases, as well as the Asian Journal archives, was 
conducted to retrieve recent literature using the keywords: 
deep learning, Magnetic Resonance Imaging, image 
segmentation, and medical image processing. References 
from relevant literature were also reviewed to obtain 
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additional sources. This study provides an extensive 
assessment of deep learning technologies in medical imaging 
from the last three years, emphasizing recent advancements 
alongside traditional approaches from earlier periods. 
 

II. SEGMENTATION IN MEDICAL IMAGING 
 
Medical images from multiple modalities, including CT, 
MRI, and US, frequently display intricate structures and 
ambiguous features due to factors such as acquisition 
constraints, pathological conditions, and individual 
biological differences, which hinder accurate image analysis 
and diagnosis [4]. Image segmentation divides an image into 
sections based on homogeneous attributes such as color, 
brightness, texture, and responsiveness.  
 
Generally, segmentation facilitates the description of 
anatomical structures in an image by identifying regions of 
interest [4]. Traditionally, medical image segmentation was 
performed manually, slice by slice, requiring a high level of 
expertise to accurately define boundaries for individual areas. 
This manual editing process is time-consuming. 
 
Several segmentation techniques employing computer 
algorithms have been developed to manipulate and process 
digital images, enabling the analysis of 2D or 3D images. 
These techniques allow the visualization of human organs, 
soft tissues, and diseases, as well as image extraction, three-
dimensional reconstruction, and segmentation. By discerning 
similarities or differences between regions, images are 
divided into segments, enabling the quantitative or 
qualitative analysis of lesions and other areas of interest. This 
approach substantially enhances the reliability and accuracy 
of medical diagnoses. 
 
Computer-aided segmentation techniques can be categorized 
into three groups: supervised, interactive (semi-supervised), 
and automatic (unsupervised) [3], [11]. Supervised 
segmentation techniques utilize manually labeled training 
data for the detection of specific objects in images, which 
limits their scope [3]. Interactive segmentation techniques in 
medical imaging refine algorithms with user guidance, a 
process critical for diagnostics and interventions. Users 
actively define and adjust segmentations, improving 
accuracy, handling complex structures, and providing 
essential support for surgical planning and navigation [13]. 
 
Unsupervised (automatic) segmentation techniques split 
images into components without prior knowledge or user 
interaction. These methods are typically applied to segment 
well-circumscribed objects. Using stacks of medical images, 
they can generate roughly segmented images that can be 
further refined by human experts [12]. 
 
A. Steps in Medical Image Segmentation 
 
The steps involved in medical image segmentation include 
the following: 

1. Data Collection: Create a medical imaging dataset 
divided into training, validation, and test sets. These 
include: 
a. Training Set: Used for model training. 
b. Validation Set: Used for hyperparameter 

adjustment. 
c. Test Set: Used for final model evaluation. 

2. Image Preprocessing: Standardize input images, apply 
random rotation and scaling, and increase the dataset size 
for machine learning-based processing. 

3. Medical Image Segmentation: Use appropriate 
segmentation techniques to process medical images and 
produce segmented outputs. 

4. Performance Evaluation: Create performance indicators 
and assess the effectiveness of the segmentation 
techniques. 

 
Deep learning techniques have recently achieved significant 
advancements in image segmentation, surpassing the 
accuracy of traditional approaches. However, non-deep-
learning computational approaches, such as the Cellular 
Automata (CA) algorithm, have also shown promise for brain 
tumor segmentation using MR images [24]. The CA 
algorithm supports researchers and clinicians in radiosurgery 
planning and therapy assessment by differentiating necrotic 
and enhanced tumor tissue content. 
 
The CA algorithm involves three stages: 
 

1. Volume of Interest (VOI) Selection: Over the tumor’s 
largest visible diameter, background and foreground 
seeds are selected based on user-defined lines. 

2. Strength Map Generation: Probability and level-set 
surface maps are obtained by running the CA algorithm 
on the VOI to impose spatial smoothness. 

3. Final Segmentation: The necrotic tumor regions are 
segmented using the chosen enhanced and necrotic 
seeds. 

 
An automated framework was also developed in [24] for 
brain tumor segmentation. It identifies edema and necrosis 
components, as well as brain internal structures, using 3D 
MRI images. This deformable framework is constrained by 
spatial relations using fuzzy classification and symmetry-
based histogram analysis. The computational approach is 
applicable to various MRI modalities and tumor classes. 
 
Fully convolutional networks (FCNs) represent a pioneering 
deep learning model, successfully applying convolutional 
neural networks to semantic image segmentation. While 
traditional segmentation techniques, such as threshold-based, 
edge-detection-based, and region-based methods, are no 
longer as effective compared to deep learning-based 
methods, their underlying concepts remain valuable. These 
approaches leverage mathematical and digital image 
processing principles. Although they offer simplicity and 
high segmentation speed, they often lack accuracy and detail 
in complex cases. 
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III. DEEP LEARNING OVERVIEW 
 
Deep learning represents a prominent perspective within the 
expanding fields of artificial intelligence (AI) and machine 
learning (ML). Using deep neural networks (DNNs), it 
mimics the cognitive learning mechanisms of the human 
brain, extracting features from extensive datasets, including 
text, images, and sound, often through an unsupervised 
approach [8].  
 
Neural networks (NNs) comprise interconnected neurons that 
act as small information processors. Together, these neurons 
form a complete deep neural network capable of processing 
images end-to-end. As the number of hidden layers’ 
increases, the network transitions into deep learning. 
Tackling the challenges of training deep networks requires 
effective layer initialization and batching techniques, 
positioning deep learning at the forefront of current research 
[3]. 
 
In computer vision, deep learning is applied in various areas 
such as pattern recognition, handwritten number recognition, 
and data dimensionality reduction. It is also utilized in 
processes like image segmentation, image recognition, scene 
analysis, image repair, and object tracking, demonstrating 
remarkable effectiveness in these domains [5]. 
 
A. Convolutional Neural Network (CNN) 
 
CNNs are structured with layers dedicated to functions such 
as convolution, pooling, and loss calculation. The initial layer 
connects directly to the input image, featuring neurons 
corresponding to the pixel count. Intermediate layers receive 
inputs from the preceding layer. Convolutional layers extract 
features by convolving filters with input data, where kernels 
(filters) are designer-defined. Each neuron responds to a 
specific area of the input, known as the receptive field. 
Convolutional layers produce activation maps that depict the 
filter’s impact on the input. Activation layers then introduce 
non-linearity post-convolution. 
 
Depending on the design, the next layer may be a pooling 
layer, which employs strategies like max pooling or average 
pooling to reduce output dimensionality. Fully connected 
layers extract high-level abstractions. During training, neural 
connections and kernels continuously optimize through 
backpropagation [14]. 
 
Within these layers, units have local connections, receiving 
weighted inputs from small neighboring units (the receptive 
field) in the preceding layer. As layers stack to create multi-
resolution pyramids, higher-level layers acquire features 
from progressively broader receptive fields [1].  
 
CNNs share weights among receptive fields within a layer, 
reducing the number of parameters compared to fully 

connected neural networks. This weight-sharing mechanism 
provides CNNs with a significant computational advantage. 
 
Some of the most well-known CNN architectures include 
ResNet, AlexNet, DenseNet, U-Net, MobileNet, and 
GoogLeNet. 
 
This review study focuses on evaluating deep learning 
algorithms for MRI brain tumor image segmentation. 
However, deep learning also finds applications in other 
domains, such as agriculture. For instance, a review in [28] 
examined the use of deep learning approaches for detecting 
and classifying tomato plant diseases using plant images. 
Several DL architectures, including AlexNet, SqueezeNet, 
VGG, VGG16, ResNet, Faster R-CNN, LeNet, S-CNN, and 
MobileNet, were analyzed and reported. 
 
The performance of a deep learning algorithm (CNN) was 
compared with two machine learning algorithms, Support 
Vector Classifier (SVC) and Random Forest (RF), for buccal 
X-ray image segmentation in [26]. Using threshold and 
region-based strategies, the study discovered and analyzed 
teeth structures and patterns with the help of decision support 
systems. Interestingly, the SVC and RF algorithms 
outperformed the CNN after a comprehensive comparison 
using the same data. This suggests that external factors may 
influence the application of DL approaches. 
 
B. Recurrent Neural Networks (RNNs) 
 
RNNs are specialized artificial neural networks designed for 
sequential data processing, such as time series and language. 
Unlike conventional feedforward networks, RNNs feature 
cyclical connections that form loops, allowing them to retain 
memories of past inputs. This cyclic structure enables RNNs 
to adeptly capture temporal dependencies, making them ideal 
for tasks involving sequences, such as language prediction 
and time series forecasting. 
 
In RNNs, the network’s hidden layers retain information 
about previous inputs, enabling consideration of context from 
earlier sequence elements [16]. A feedback loop is employed, 
where the output of one cell serves as the input for the next 
time step, facilitating the learning of dependencies. 
 
RNNs are widely applied in time series analysis, natural 
language processing, and speech recognition. However, they 
face challenges such as vanishing gradients, which hinder the 
capture of long-range dependencies.  
 
To address these limitations, advanced architectures such as 
Gated Recurrent Units (GRUs) and Long Short-Term 
Memory (LSTM) networks have been developed, 
significantly improving the performance and reliability of 
RNNs in sequential data tasks [3]. 
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Fig 1. Structure of a CNN [15] 

 
IV. DEEP LEARNING APPLICATION TO BRAIN 

TUMOR IMAGE SEGMENTATION 
 
Numerous studies have employed deep learning techniques 
for segmenting brain tumor images. Essential studies have 
been selected, analyzed, and discussed below based on 
specific search criteria. The segmentation performance of 
these techniques is evaluated using a metric called the Dice 
score, which measures the similarity between predicted and 
ground truth regions. This determines the regions of interest 
(ROIs) to be automatically segmented. The key ROIs 
segmented in this review are the Tumor Core (TC), Whole 
Tumor (WT), and Enhanced Tumor (ET). 
 
A novel architecture called the 3D multimodal fully 
convolutional network (FCN) was proposed in [17] for 
segmenting brain MR images with isointense phases. The 
dataset comprised MR images of 11 healthy infants, 
including T1, T2, and diffusion-weighted (DW) sequences. 
The T2 and fractional anisotropy (FA) images were aligned 
with the corresponding T1 images and upscaled to a 
resolution of 1×1×1 mm31 \times 1 \times 1 \, 
\text{mm}^31×1×1mm3. Initial segmentations were 
generated using the iBEAT software, followed by manual 
editing to correct errors. The 3D FCN integrated coarse and 
dense layer information, refining segmentation performance 
by fusing features from different scales and incorporating 
contextual semantic information. This approach enabled 
accurate segmentation of multimodal brain MRI images. 
 
The study in [18] addressed the vanishing gradient problem 
in CNN and FCN models by introducing the ResNet model. 
This innovation incorporates "connection links" that 
facilitate the backward propagation of gradients, preserving 
spatial information and reducing computational time. The 
improved ResNet model, implemented in TensorFlow using 
the BraTS 2020 dataset, outperformed CNN and FCN models 
with higher accuracy and reduced computational time. 
ResNet’s shortcut connections enable efficient tumor 
detection without expert intervention, alleviating complexity 
and time constraints. 
 
The AGSE-VNet model for 3D MRI image segmentation 
was presented in [19]. Within the VNet architecture, a 
squeeze-and-excite (SE) module was integrated into the 
encoder, while an attention guide (AG) filter was included in 
the decoder. The encoder enhanced relevant features while 

suppressing irrelevant details, and the attention block 
removed background noise while guiding feature extraction 
(e.g., edges). Additionally, a categorical Dice loss function 
was employed to address class imbalance. The model was 
evaluated on the BraTS 2020 validation set, producing Dice 
scores of 0.69 for TC, 0.85 for WT, and 0.68 for ET. 
Although these results are promising, particularly for WT and 
TC, further improvements may be necessary to fully harness 
the model’s potential. 
 
Study [20] employed an encoder-decoder CNN architecture 
for brain tumor segmentation using 3D MRI scans. The 
architecture featured an asymmetric design with a larger 
encoder and smaller decoder, along with an integrated auto-
encoder branch for regularization. To enhance feature 
clustering, particularly with limited training data, the 
architecture utilized a variational auto-encoder strategy. An 
ensemble of ten models was trained, yielding Dice scores of 
0.884 for WT, 0.815 for TC, and 0.766 for ET on the BraTS 
2018 test set. Additionally, the deepSCAN architecture and 
its variants demonstrated comparable performance, 
achieving Dice scores of 0.890, 0.830, and 0.810 for WT, TC, 
and ET, respectively, on the BraTS 2019 test set after 
incorporating lightweight local attention and instance 
normalization. 
 
BU-Net, an enhancement of the U-Net architecture, was 
introduced in [21]. It incorporates wide context modules and 
residual extended skip connections. The wide context block 
facilitates the transition from the encoder to the decoder by 
connecting the deconvolution layer output with the 
corresponding residual extended skip block output. Although 
the use of 2D convolution in BU-Net enhances contextual 
information acquisition and global feature aggregation, it 
results in a loss of context and local information across 
multiple image slices. To address class imbalance, a 
combined weighted cross-entropy and Dice loss function was 
employed. Evaluation on the BraTS 2017 and BraTS 2018 
datasets demonstrated that BU-Net outperformed baseline 
methods, such as U-Net, EnsembleNet, Seg-Net, ResU-Net, 
PSPNet, S3DU-Net, NovelNet, TTA, and MCC, using the 
same optimizers and loss functions. However, further 
investigation is required to assess its performance under 
diverse algorithmic settings. 
 
In [22], the AResU-Net model was introduced, enhancing the 
ResU-Net architecture by incorporating squeeze excitation 
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and attention blocks in skip connections. These modifications 
improved the retrieval of features during up-sampling, 
reducing the semantic gap between down-sampling and up-
sampling processes. Evaluation on the BraTS 2017 dataset 
with 20% of the training set yielded Dice scores of 0.780 for 
TC, 0.881 for WT, and 0.719 for ET. On the BraTS 2018 
validation set, the AResU-Net model achieved Dice scores of 
0.810 for TC, 0.876 for WT, and 0.773 for ET, outperforming 
most compared models in enhancing tumor segmentation. 
 
A study in [23] implemented a 3D U-Net model with several 
enhancements, including substituting max pooling with 

average pooling in the encoder for improved gradient flow. 
Dropout with a probability of 0.05 and instance 
normalization were applied in both the encoder and decoder. 
To address class imbalance, a weighted loss function 
combining categorical cross-entropy and curriculum class 
weighting was employed. Fivefold cross-validation using the 
BraTS 2018 dataset produced Dice scores of 0.793, 0.888, 
and 0.690 for TC, WT, and ET, respectively. On the 
validation set, the model achieved Dice scores of 0.825, 
0.909, and 0.788 for TC, WT, and ET, respectively. Notably, 
it excelled in predicting enhanced tumors, warranting further 
investigation. 

 
TABLE I: Comparison of Common Deep Learning Models on Brain Tumor Image Segmentation 

Reference Modality Network Dataset 
Dice Scores 

Tumor 
Core (TC) 

Whole 
Tumor (WT) 

Enhanced 
Tumor (ET) 

Nie et al., [17] MRI 3D FCN DW images 0.9190 0.9401 0.9610 
Shebab et al., [18] MRI Res-Net BRATS 2020 0.93 0.86 0.96 

Guan et al., [19] MRI AGSE-VNet BRATS 2020 0.69 0.85 0.68 
Myronenko et al., [20] MRI 3D-CNN BRATS 2018 0.810 0.890 0.810 

Rehman et al., [21] MRI BU-Net BRATS 2017, 
BRATS 2018 0.901 0.867 0.853 

Zang et al., [22] MRI AresU-Net BRATS 2017, 
BRATS 2018 0.810 0.876 0.773 

A. Crimi et al., [23] MRI 3D U-Net BRATS 2018 0.825 0.909 0.788 
 

V. DISCUSSION 
 
The studies reviewed demonstrate the effectiveness of 
various deep learning models in accurately segmenting brain 
MRI images, as evidenced by the reported Dice scores. The 
Dice score, a critical metric for evaluating segmentation 
performance, measures the spatial overlap between predicted 
and ground truth regions. 
 
Interpreting the Dice scores provides significant insights into 
the segmentation accuracy and robustness of the deep 
learning models. Higher Dice scores, closer to 1, indicate 
strong agreement between actual and predicted tumor 
regions, reflecting superior segmentation performance. 
Variations in Dice scores across different tumor regions-
Tumor Core (TC), Whole Tumor (WT), and Enhanced 
Tumor (ET)-highlight the models’ abilities to differentiate 
tumor subtypes and accurately capture tumor boundaries. 
 
Based on the Dice scores, it can be inferred that deep learning 
models such as 3D fully convolutional networks (3D FCNs), 
ResNet models, AGSE-VNet models, and encoder-decoder 
CNN architectures exhibit high segmentation accuracy for 
brain tumor images. Consistently high scores across multiple 
studies suggest the reliability and effectiveness of these 
models in accurately identifying and delineating tumor 
regions. However, lower scores in specific regions indicate 
areas where further refinement, such as enhanced model 
architectures or dataset augmentation, is required to improve 
segmentation performance. 
 

VI. CONCLUSION 
 
In conclusion, this brief yet critical review highlights 
significant advancements in the application of deep learning 
methods for brain tumor image segmentation within medical 
imaging technology. The promising results achieved by deep 
learning-based segmentation approaches underscore their 
potential to enhance diagnostic capabilities for brain tumor 
detection and analysis. Continued research and development 
in this field hold immense promise for advancing medical 
imaging practices and ultimately benefiting patient care 
through more accurate and efficient tumor segmentation 
techniques. 
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