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Abstract - The rapid industrialization and technological 
advancements of recent decades have significantly improved 
various facets of human life but have also intensified air 
pollution through the emission of harmful gases. Accurate 
detection of these pollutants, including Carbon Monoxide (CO), 
Ammonia (NH₃), and Sulfur Dioxide (SO₂), is critical for 
mitigating environmental and health hazards. Traditional 
sensor technologies often fail due to calibration issues and 
susceptibility to extreme temperatures, underscoring the need 
for advanced monitoring solutions. This study investigates the 
integration of artificial intelligence (AI), particularly ensemble 
machine learning models, to address these challenges. 
Leveraging the Gas Sensor Array Drift Dataset, a Voting 
Ensemble Learning Model (VELM) was developed and 
benchmarked against individual machine learning classifiers 
such as Random Forest, Support Vector Machine, and Logistic 
Regression. The VELM demonstrated superior performance, 
achieving a classification accuracy of 99.46%, surpassing 
conventional methods while maintaining low variance. Despite 
marginal accuracy differences with Random Forest, VELM’s 
majority voting approach consistently ensured robust 
performance. The findings highlight the transformative 
potential of ensemble learning in environmental monitoring 
and provide a foundation for future research. 
Recommendations include exploring deep learning 
enhancements and deploying the model in real-world settings 
to refine its applicability for detecting a broader range of 
harmful gases, thereby advancing public safety and 
environmental sustainability. 
Keywords: Air Pollution, Ensemble Machine Learning, Voting 
Ensemble Learning Model (VELM), Gas Sensor Array Drift 
Dataset, Environmental Monitoring 

I. INTRODUCTION

The recent global increase in industrialization and 
technological advancement activities has led to 
improvements in all spheres of life. The burning of fossil 
fuels, such as coal, oil, and gas, for heating and 
transportation contributes to air pollution, global warming, 
climate change, and acid rain [1]. Gas sensors are developed 
using mathematical equations embedded within 
microcontrollers to compute gas concentrations, enabling 
timely warnings and interventions [2]. 

The process involves collecting gas level readings with 
sensors, such as MQ2 to MQ135, transmitting data to 

microcontrollers, and storing it in databases. Additionally, 
thermal cameras capture infrared radiation images for 
comprehensive analysis, facilitating the detection of harmful 
gases in the air [3]. Some of these harmful gases, as noted 
in [4], include Carbon Monoxide (CO), Hydrogen (H₂), 
Ammonia (NH₃), Hydrogen Sulfide (H₂S), Acetone 
(CH₃COCH₃), Ethanol (C₂H₅OH), Sulfur Dioxide (SO₂), 
and Nitrogen Dioxide (NO₂). 

However, the need to effectively monitor harmful gases 
released into the air due to industrial activities cannot be 
overemphasized. This is attributed to the limitations of 
sensor technology, such as failure in detecting harmful 
gases due to high temperatures and poor calibration, among 
other factors [5]. Owing to the recorded success of artificial 
intelligence, N. N. Viet et al., [4] conducted a study aimed 
at developing efficient AI tools for gas detection and 
categorization, focusing on designing a simple sensor array 
configuration and comparing machine learning models. A 
gradient-boosting model, which achieved 100% accuracy on 
training datasets, demonstrated its potential for gas-sensing 
applications. 

The exponential increase in industrialization necessitates a 
more robust approach to detecting harmful gases. According 
to A. A. Udosen et al., [6], the notable successes recorded 
with voting ensemble learning models, an artificial 
intelligence (AI) algorithm, highlight their potential for 
exploitation. A. A. Abiona et al., [7] and U. A. Umoh 
et al., [8] argued that AI improves decision-making and 
optimizes output. Additionally, T. Deep Singh et al., [9] 
stated that machine learning enables computers to learn 
automatically and enhances their performance without 
explicit programming. Despite its wide acceptance, E. 
Onuiri et al., [10] emphasized that regulations should be 
placed on the use of machine learning and related AI 
algorithms. 

II. LITERATURE REVIEW

Artificial Intelligence (AI), as defined by U. J. Nzenwata 
et al., [11], is a scientific effort to develop devices capable 
of replicating human intellect. Machine learning, a subset of 
AI, is a mathematically constructed technique enabling 
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intelligent learning using refined datasets. As part of the 
tasks AI can automate, A. Ahmadi [12] highlights its 
capacity for logic, interpretation of meaning, drawing broad 
conclusions, and learning from experience. Leveraging 
these capabilities, B. Vaferi et al., [1] developed a stacked 
machine learning model that used zinc oxide-based sensors 
to detect hydrogen. The authors utilized XGBoost and Extra 
Trees regressors to create a highly accurate and 
generalizable approach, outperforming traditional artificial 
neural networks in performance metrics. 

Furthermore, N. N. Viet et al., [4] compared the 
performance of several machine learning models in 
identifying harmful gases through thermal fingerprint 
measurements and Metal Oxide Semiconductor (MOS) 
sensors. Additionally, S. Mu et al., [13] implemented an 
electronic nose system combining a MOS-based micro-
electromechanical system (MEMS) gas sensor array and a 
one-dimensional convolutional neural network (1D-CNN) 
to identify several harmful gases. Unlike conventional 
machine learning algorithms, which achieved an accuracy 

of approximately 80%, the developed model performed with 
about 99.8% accuracy. However, the model was limited to 
detecting only seven gases. 

To enhance kitchen safety, K. Kumar et al., [14] developed 
an Internet of Things (IoT) and Machine Learning (ML) 
integrated Hazardous Gas Detection System (IoT-HGDS) 
using ESP32 MOX-based sensors and DHT22. The system 
was designed to mitigate the risk of fire hazards in the 
kitchen, thereby reducing the likelihood of severe damage 
or injury. According to E. E. Onuiri et al., [15], the success 
of these models is primarily based on the precision 
capabilities of machine learning algorithms. 

To produce a diverse dataset of harmful gases, J. Fonollosa 
et al., [5] conducted an experiment that generated 13,910 
records of six harmful gases from chemical sensors at 
different concentration levels. Figure 1 illustrates the 
experimental setup used for data acquisition via a computer-
supervised continuous flow system. 

Fig. 1 Experimental setup used for data acquisition 

III. METHODOLOGY

A. Dataset

The study utilized the Gas Sensor Array Drift Dataset 
obtained from the Data Hub repository [16]. This dataset 
contains 13,910 rows of data with 128 features and an 
output label representing six classes of harmful gases, 
derived from the concentration levels of an array sensor 
[17]. The data was collected over approximately 36 months 
(January 2007 to February 2011) using SnO₂ Taguchi Gas 
Sensors (TGS) at the BioCircuits Institute’s ChemoSignals 
Laboratory, University of California, San Diego. 

The dataset was recorded using 16 gas sensors arranged in 
the following matrix order: TGS2602, TGS2602, TGS2600, 

TGS2600, TGS2610, TGS2610, TGS2620, TGS2620, 
TGS2602, TGS2602, TGS2600, TGS2600, TGS2610, 
TGS2610, TGS2620, TGS2620. However, the dataset 
exhibited no clear pattern, making it challenging for humans 
to interpret. 

This harmful gas detection model integrates five 
classification algorithms to identify gases such as Ethanol, 
Ethylene, Ammonia, Acetaldehyde, Acetone, and Toluene. 
The model progresses through stages including data 
cleaning, feature selection, and ensemble learning. Five 
models are combined to create a heterogeneous ensemble 
model, with a weighted average used for prediction. 

The class labels were used to encode the detected harmful 
gases in the dataset, which was saved in the comma-
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separated value (CSV) format. The dataset comprises 
13,910 samples with 128 features and a multi-classification 
label, as encoded in Table I. 

TABLE I MULTI-CLASSIFICATION LABEL 
Gas Detected Label Freq 
Ethanol 1 2565 
Ethylene 2 2926 

Ammonia 3 1641 
Acetaldehyde 4 1936 
Acetone 5 3009 

Toluene 6 1833 

A. Preparation Stage

Before model development, the dataset undergoes 
preparation, involving two key stages: 

1. Pre-Processing: Data cleaning addresses missing
values and outliers caused by poor sensor readings.
Standardization transforms the dataset to have attributes
with a Gaussian distribution, facilitating the application
of modeling techniques. The StandardScaler class from
Scikit-learn in Python is commonly used for this
purpose.

2. Feature Selection: Identifying essential features
enhances model performance by excluding irrelevant
ones. With 128 independent features in the dataset,
Principal Component Analysis (PCA) is employed to
select only the necessary features, optimizing model
performance.

B. Training Stage

During the training stage, the dataset is utilized to train 
models using K-Nearest Neighbors (KNN), Decision Tree 
(DT), Logistic Regression (LR), Support Vector Machine 
(SVM), and Random Forest (RF) classification techniques. 
Subsequently, a Voting Ensemble Learning Model (VELM) 
is developed to enhance efficiency in dynamic 
environments. The dataset is split into 80% for training and 
20% for testing and validation. Assessing the accuracy of 
each model during training provides insight into their 
performance. 

C. Validation and Testing Stage

In the validation and testing stage, the remaining 20% of the 
dataset is used to evaluate model performance. K-fold cross-
validation, with kkk values of 5 or 10, is employed to split 
the dataset for training and testing, ensuring more reliable 
performance estimates.  

Evaluation metrics, including classification accuracy, 
confusion matrix, and classification report, are utilized to 
accurately gauge model performance on fresh data. 

D. Model Evaluation

In the model evaluation phase, the effectiveness of the 
developed harmful gas detection model is assessed using 
various machine learning classification performance 
metrics. These include: 

1. Classification Accuracy: Measures the proportion of
correctly predicted events.

2. Confusion Matrix: Provides insights into the model’s
accuracy across different classes.

3. Classification Report: Offers a comprehensive analysis
of classification performance, including precision,
recall, and F1-score.

Evaluation involves spot-checking six machine learning 
algorithms using 10-fold cross-validation, with mean 
accuracy measures indicating algorithm performance. 
Ethical considerations ensure adherence to standard rules 
and guidelines. The expected contribution to knowledge lies 
in the utilization of the Voting Ensemble Learning Model 
(VELM) for detecting harmful gases. Table II shows the 
confusion matrix for the data points. 

TABLE II CONFUSION MATRIX 
Predicted No: 0 Predicted Yes:1 

Actual No: 0 TP TN 
Actual Yes: 1 FP FN 

IV. RESULTS AND DISCUSSION OF FINDINGS

Ensemble learning techniques, including the Voting 
Ensemble Learning Model (VELM), were applied for 
harmful gas detection, demonstrating significant promise in 
environmental science and engineering. The study 
compared VELM with robust base classifiers such as 
Support Vector Machine (SVM), Random Forest (RF), 
Logistic Regression (LR), Decision Trees (DT), and K-
Nearest Neighbors (KNN). Data preparation and model 
training were conducted, with metrics such as recall and F1-
score calculated for performance evaluation. Results 
indicated that VELM outperformed individual models, 
highlighting its superior efficacy compared to existing 
models. 

A. Data Preparation

The Gas-Drift dataset from the DataHub repository was 
utilized, consisting of 13,910 records gathered from an array 
of 16 metal-oxide gas sensors, with 128 distinct features. 
Data preparation involved a scaling transformation to 
address negative values arising from sensor malfunctions. 
Scaling ensured uniformity across all values, standardizing 
them with a mean of 0 and a standard deviation of 1. 
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Following data transformation, each attribute’s values 
achieved a mean of 0 and a standard deviation of 1 [28]. 
Feature selection was conducted using Principal Component 
Analysis (PCA) to identify the number of principal 
components, reducing the dataset to 20 principal 
components. 

B. Model Training and Testing

In supervised learning, the train-test split was used to 
evaluate model performance on new data, with x 
representing 128 independent variables and y representing 
multi-class target values.  

The dataset underwent K-fold cross-validation, splitting it 
into 80% for training and 20% for testing subsets. Each base 

classifier contributed to the Voting Ensemble Learning 
Model, with the weighted average used to determine the 
model’s accuracy score. 

C. Evaluation of Model Performance Metrics

The study evaluated model performance using three primary 
criteria: 

D. Classification Accuracy

Classification accuracy was used to quantify the proportion 
of correct predictions made out of all predictions. 
Multiplying the value by 100 provided the accuracy in 
percentage terms. Table III illustrates the accuracy of the 
models following evaluation. 

TABLE III CLASSIFICATION ACCURACY OF EACH MODEL 
Sl. No. Model Accuracy (%) Standard Deviation (%) 

1 VELM 99.46 0.1774 
2 RF 99.44 0.2199 
3 KNN 99.24 0.208 

4 LR 99.02 0.2612 
5 SVM 98.32 0.4490 
6 DT 97.33 0.3291 

The results from the study showed that the developed 
heterogeneous Voting Ensemble Learning Model (VELM) 
demonstrated a marginal difference in accuracy compared to 
the homogeneous Random Forest (RF) machine learning 
model. The VELM outperformed the other models, with 
Decision Tree (DT) being the poorest-performing model. 
The classification accuracies for VELM, RF, and DT were 
99.46%, 99.44%, and 97.33%, respectively. 

From the classification accuracy results, it can be concluded 
that the VELM was the best-performing model. Higher 

accuracy levels of the evaluated models indicate better 
performance in detecting harmful gases. Additionally, as the 
standard deviation from the mean decreased for each 
evaluated model, the accuracy performance of the models 
improved. 

Figure 2 illustrates the Boxplot comparison of conventional 
machine learning techniques, with RF having the best 
prediction estimate. 

Fig. 2 Boxplot model comparison 
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E. Confusion Matrix

The confusion matrix was used to compare the accuracy of 
the multi-class models.  

TABLE IV CONFUSION MATRIX SHOWING DATA POINTS IN THE 
TRUE POSITIVE REGION FOR CLASS 1 

Sl. No. Model Data Points in the  
True Positive region 

1 VELM 522 

2 RF 521 
3 KNN 520 
4 LR 517 

5 SVM 515 
6 DT 512 

The results from the study, as shown in Table IV, indicated 
that the developed Voting Ensemble Learning Model 
(VELM) had the highest number of values in the True 

Positive category, followed by Random Forest (RF), with 
Decision Tree (DT) having the lowest. 

Here, data points in the True Positive region for Class 1 tells 
how each of the techniques performed. 

F. Performance Analysis

The Voting Ensemble Learning Model (VELM) was 
benchmarked against classic machine learning classifiers, 
including Random Forest (RF), Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), 
and Logistic Regression (LR), to determine optimal 
training/testing scenarios. The results are displayed in 
Figure 3. 

The classification report indicated that the VELM achieved 
the highest accuracy, with a weighted average classification 
accuracy of 99% and an average F1-score of 1%. 

Fig. 3 Models’ Performance Estimation 

In the study both Random Forest and the developed Voting 
Ensemble Learning Model (VELM) outperformed 
individual single-based classic machine learning models. 
The VELM achieved the highest training accuracy of 
99.46% with a low standard deviation of 0.1774%. By 
leveraging the weighted average of different base 
classifiers, the VELM addressed weaknesses to ensure 

superior performance. Although there was a marginal 0.02% 
difference compared to Random Forest, VELM’s majority 
voting approach improved overall performance. Table V 
compares the performance of the developed VELM with 
previously developed ensemble learning models, 
demonstrating the superior performance of the VELM over 
other models. 

TABLE V BENCHMARKING THE ENSEMBLE LEARNING MODEL 
Sl. No. Method ACC Precision Sensitivity Specificity F1-Score 

1 VELM 99.46% 99.01% 99.01% 99.01% 99.01% 
2 [12] 97.06% 98.73% 97.17% 99.24% 97.94% 
3 [46] 92.49% 92.20% 94.93% 91.13% 93.55% 

4 [52] 88.63% 90.28% 86.09% 94.35% 88.14% 

V. CONCLUSION

This study addresses the critical need for accurate harmful 
gas detection using a Voting Ensemble Learning Model 
(VELM) integrating IoT technology and machine learning 
algorithms. By combining five well-performing classifiers, 
including Support Vector Machine (SVM), Logistic 

Regression (LR), Decision Trees (DT), K-Nearest 
Neighbors (KNN), and Random Forest (RF), the VELM 
achieves high prediction accuracy. Results indicate that 
VELM and Random Forest outperform other individual 
algorithms, with VELM demonstrating marginal superiority 
with a 99.46% accuracy score and a standard deviation of 
0.1774%. Benchmark analysis confirms VELM’s superior 
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performance, suggesting its potential for enhancing gas 
detection accuracy. Future research could explore advanced 
techniques such as ensemble learning and deep learning 
with larger, high-quality datasets. The study utilized the Gas 
Sensor Array Drift Dataset, containing 13,910 rows and 128 
features, and introduced a Voting Ensemble Learning 
Model (VELM) that combines SVM, Logistic Regression, 
Decision Trees, KNN, and Random Forest algorithms. The 
VELM achieved an impressive accuracy of 99.46%, making 
it suitable for gas detection systems. This underscores the 
need for advanced machine learning techniques, such as 
ensemble learning, to overcome the limitations of classic 
methods. The VELM offers a promising solution for real-
time harmful gas detection, addressing critical safety 
concerns. The methodology employed in this study for 
detecting harmful gases could be applied to various 
detection systems by prioritizing essential features. Pilot 
studies involving local stakeholders could enhance data 
collection, particularly in regions with data scarcity, aiding 
in system improvement and implementation. 

A. Contribution to Knowledge

The study addresses the limitations of classic machine 
learning algorithms in gas detection by proposing a Voting 
Ensemble Learning Model (VELM) to overcome issues 
such as overfitting and local minima. The developed VELM 
offers the potential for real-time detection of harmful gases, 
thereby potentially saving lives. Additionally, it opens 
avenues for further academic research to enhance its 
outcomes. 

B. Suggestions for Further Studies

Future research could explore the implementation and 
testing of enhanced ensemble models integrating deep 
learning algorithms for detecting harmful gases. 

C. Limitation of the Study

Accessing appropriate datasets and computational tools 
posed challenges, slowing down model development for 
harmful gas detection. 
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