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Abstract - Electromyogram (EMG) signals provide a visual 
representation of the electrical activity of muscles and serve as 
a key tool for analyzing muscular activity in subjects with 
paralysis and neuromuscular diseases. This study focuses on 
the analysis of EMG signals in individuals with amyotrophic 
lateral sclerosis (ALS), myopathy, and healthy subjects. 
Twelve statistical features in the time domain are extracted 
from the EMG signals of these subjects, and the significance of 
these features is tested using an F-test. The results show that 
all twelve features are statistically significant (p < 0.05) in 
distinguishing between normal, ALS, and myopathy 
conditions. These findings suggest that time-domain statistical 
features can be effectively used to analyze paralysis conditions, 
potentially aiding in the development of better treatment 
options. Since biomedical signals are continuous by nature, 
graphical representations of these signals, such as time-
amplitude plots, are essential for the analysis of time-series 
data. The analysis of EMG signals in the time domain reveals 
important information about the variations in amplitude over 
time, providing insights into muscular dysfunction in various 
paralysis conditions. 
Keywords: Electromyogram (EMG) Signals, Time-Domain 
Statistical Features, Amyotrophic Lateral Sclerosis (ALS), 
Neuromuscular Diseases, Muscular Activity Analysis 

I. INTRODUCTION

Paralysis is a neuromuscular condition that describes the 
loss of muscle function, which can occur in one or more 
parts of the body. Paralysis results from damage to the 
nervous system [1]. The nervous system consists of the 
central nervous system (CNS) and the peripheral nervous 
system (PNS). The CNS includes the brain and spinal cord, 
while the PNS comprises nerves outside the CNS. The 
peripheral nervous system performs numerous functions; 
motor neurons control muscle actions, and sensory neurons 
activated by environmental input send information to the 
CNS [2]. 

Damage to the nerves, spinal cord, or brain interrupts the 
transmission of nerve signals, leading to paralysis. The 
severity of paralysis depends on the extent of muscle 
function loss. Paresis, also called partial paralysis, causes 
muscle weakness and impaired movement. In complete 

paralysis, movement in the affected body part is restricted. 
Permanent paralysis often results from head or neck injuries 
or neuromuscular disorders. Localized paralysis affects a 
small part of the body, while generalized paralysis impacts a 
larger area [3]. 

Different types of paralysis include monoplegia, 
hemiplegia, paraplegia, and quadriplegia. Monoplegia 
affects a single arm or leg, hemiplegia impacts an arm and 
leg on the same side of the body, and paraplegia affects both 
legs, sometimes involving the hips and lower abdominal 
organs. Spinal cord injury is the most common cause of 
paraplegia. Quadriplegia affects the arms, legs, and trunk 
muscles. 

Flaccid paralysis causes lower motor neuron damage, 
muscle shrinking, and deterioration. The PNS is affected by 
autoimmune disorders, Guillain-Barre syndrome, and 
inflammation of the spinal cord, known as myelitis [4]. 

Muscle stiffness, spasms, and muscle weakness are caused 
by spastic paralysis. Spastic paralysis results from spinal 
cord injuries, myopathy, amyotrophic lateral sclerosis 
(ALS), stroke, or hereditary spastic paraplegia [5]. 

Information signals are transmitted between the brain and 
other parts of the body through a healthy nervous system. 
Signals from the brain are transmitted to the PNS via the 
spinal cord. The peripheral nerves regulate muscle 
movements and sensory functions. Damage to any part of 
the nervous system affects health and quality of life [6].  

Diagnosing paralysis involves assessing damage to the 
muscles and nerves, and the functioning of muscles and 
nerves is evaluated through EMG signal analysis. Other 
testing modalities, such as MRI scans, CT scans, or X-rays, 
can also be used for assessment. The nerve function test, 
performed using EMG, measures responses to muscle 
stimulation [7]. Medical treatments, physical therapy, 
mobility devices, and management strategies can improve 
quality of life. 
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Paralysis can lead to difficulty in breathing, deep vein 
thrombosis, speech difficulty, difficulty in swallowing, 
urinary incontinence, loss of bowel control, and heart 
problems. Analyzing the paralyzed condition aids in the 
diagnosis of impaired muscular activities, which can lead to 
better treatment options. A visual representation of muscle 
electrical activity is called an electromyogram (EMG). 
Electromyography is a device used to capture the electrical 
potential generated when a muscle cell is electrically or 
neurologically stimulated.  

To analyze muscular activity and determine the degree of 
recruitment or activation, EMG signals can be examined. 
EMG is related to the activity of voluntary muscular 
contractions. The functional element of muscular 
contraction is the motor unit, which consists of a single 
alpha motor neuron and all the muscle fibers it innervates 
[8]. 

When action potentials exceed the depolarization threshold, 
the muscle fiber contracts. The motor unit action potential 
comprises the sum of individual muscle fiber action 
potentials. The EMG signal is formed by the motor unit 
action potentials within the electrode’s pick-up zone, which 
are algebraically summed. Multiple motor units are 
generally present in the electrode’s pick-up zone. Muscles 
that govern fine movements have fewer muscle fibers per 
motor unit, whereas muscles used for large, gross 
movements have more muscle fibers per motor unit. 

The current produced by ionic flow across the muscle fiber 
membranes travels through auxiliary tissues to the detection 
surface, constituting the EMG. Groups of innervated muscle 
fibers form motor units. Motor unit activation is controlled 
by signals from the nervous system and generates Motor 
Unit Action Potentials (MUAPs). The CNS generates 
MUAPs to produce force and action from the muscles. The 
EMG signal is composed of these MUAPs from 
simultaneously active motor units [8]. A schematic 
representation of the generation of MUAPs is presented in 
Figure 1. Figure 2 shows the action potential from a muscle 
fiber. 

Fig. 1 Origin of EMG [9] 

Fig. 2 Action potential from muscle fiber [8] 

For the diagnosis of neuromuscular pathology using 
diagnostic EMG, the properties of motor unit action 
potentials, such as duration and amplitude, are analyzed 
[10]. Muscle activity in relation to movement is analyzed 
using kinesiological EMG [10]. 

The measure of electrical potential present on the skin with 
respect to muscle contractions is called EMG. The voltages 
are detected by electrodes placed on the skin, and the 
measured voltage corresponds to the activity of the muscle. 
As the muscle is activated, the signal amplitude increases 
from zero to tenths or hundreds of microvolts over time.  

Surface EMG (sEMG), a non-invasive method, has been 
used for motion analysis and muscle function assessment. 
sEMG has applications in sports, ergonomics, occupational 
health, and rehabilitation medicine. It is used to investigate 
muscle activation and physiological characteristics [11]. A 
limitation of sEMG is that individual motor units cannot be 
reliably distinguished. Using percutaneous needle EMG, the 
electrical activity of individual motor units can be 
visualized, allowing for the evaluation of neurological 
diseases. 

The needle EMG method is used to acquire and analyze 
electrical signals from individual motor unit muscle fibers. 
EMG signal recording is performed during voluntary 
contraction and at rest, using clinically recommended 
needle electrodes.  

The needle electrodes are inserted into the muscle to record 
muscle fiber activity during contraction and at rest, and the 
acquired signal is amplified for analysis. Precautions should 
be taken in selecting needle electrodes, amplifiers, and 
filters for noise removal. The possible risks associated with 
the needle EMG method include muscle pain, muscle 
bleeding, and pneumothorax [12]. 
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Fig. 3 Needle EMG Instrumentation [13] 

The clinically recommended needle electrodes are inserted 
into the muscle, as shown in Figure 3. The acquired signals 
are further processed using appropriate methods and 
displayed on electronic devices. 

There are two types of needle electrodes: monopolar and 
concentric. The insertion tube serves as the reference 
electrode, while the concentric needle electrode consists of a 
thin wire that passes through the shaft to act as the recording 
electrode. In the monopolar needle electrode, the shaft is 
coated with Teflon, leaving the tip as the recording 
electrode, and a separate reference electrode is needed. A 
monopolar needle electrode is low-cost and causes less 
insertion pain. However, electrode impedance mismatch can 
increase electrical noise. The clinical history and the 
findings of neurologic examinations can be used to choose 
the muscle to be tested [14]. 

Electromyography (EMG) is a test used to assess the health 
of muscles and nerve cells. The acquired EMG data is used 
to examine muscle function, nerve function, or disturbances 
in nerve-to-muscle signal transmission. EMG results aid in 
the proper diagnosis of neuromuscular disorders, including 
amyotrophic lateral sclerosis, peripheral neuropathies, 
muscular dystrophy, myasthenia gravis, and myopathy. 
EMG is performed with low risk; however, potential risks 
during the EMG procedure include bleeding, nerve injury, 
infection, and pneumothorax [15]. 

Needle EMG is used in the field of sports, as it can assess 
dynamic situations. EMG recordings of muscle activity 
during athletic performance provide valuable insights 
related to performance requirements and injury prevention 
[16].  

An EMG test may be used to assess neuromuscular 
disorders and aids in the diagnosis of degenerative 
conditions, motor tissue issues, nerve damage, and 
neuromuscular diseases. Neuromuscular illnesses such as 
amyotrophic lateral sclerosis, peripheral neuropathies, 
myopathies, muscular dystrophy, and myasthenia gravis can 
be evaluated and managed using electromyography [17]. 

II. LITERATURE SURVEY

Most neuromuscular disorders, including ALS and 
myopathy, result in paralysis [27]. Amyotrophic lateral 
sclerosis (ALS), also known as Lou Gehrig’s disease, is a 
degenerative neuromuscular condition characterized by the 
loss of motor nerve cells in the brain and spinal cord. 
Muscular weakness occurs due to the loss of muscle 
function, which results when motor neurons are unable to 
transmit signals to the muscles. ALS does not negatively 
affect a person’s intelligence, vision, hearing, or sense of 
taste, smell, or touch [18]. 

ALS is considered a unique condition as it strikes suddenly 
and is relatively rare. The illness most frequently affects 
individuals between the ages of 40 and 70. Due to intensive 
research and advancements in understanding the primary 
causes, prevention, and treatment of ALS, many patients 
can live longer. Timely and accurate diagnosis can 
significantly increase the life expectancy of individuals with 
ALS. 

1. Causes of ALS: ALS is a unique and unpredictable
disease, with its main cause often linked to genetic history.
It is a degenerative neurological illness characterized by the
loss of muscle control as it destroys nerve cells in the brain
and spinal cord.

2. Symptoms of ALS: The symptoms of ALS include muscle
twitching and cramping, loss of motor function in the hands
and arms, weakness and fatigue, frequent falls and dropping
objects, difficulty projecting one’s voice, shortness of
breath, breathing difficulties, swallowing difficulties, and
paralysis. The symptoms of ALS are illustrated in Fig. 4.

3. ALS Diagnosis: ALS is diagnosed based on medical
history and physical examinations. Laboratory tests,
including blood, urine, and thyroid function tests, are
conducted. Additionally, muscle and nerve examinations,
cerebrospinal fluid analysis, X-ray, and MRI techniques are
employed for diagnosis.
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Fig. 4 Symptoms of ALS [19]

The procedures used in the examination to evaluate and 
identify anomalies in the muscles and motor neurons 
include electromyography (EMG) and nerve conduction 
velocity (NCV). Electrodes are inserted into the muscle or 
placed on the skin to monitor electrical activity and muscle 
response. 

The term “myopathy” is used to describe diseases related to 
muscles. In individuals with myopathy, the muscles 
function less effectively than normal, which may be due to 
abnormal muscle development, muscle damage, or a 
deficiency of important components in the muscle system 
[20]. Proteins and other structural elements work together to 
contract a muscle. Myopathy may result from a deficiency 
in one of these components. 

4. Myopathy Symptoms: Myopathy typically results in
muscular weakness, with proximal weakness being the most
common type. This means that the muscles of the upper
arms and upper legs are more noticeably weaker than the
muscles of the hands or feet. In some cases, myopathy can
also cause deterioration of the respiratory muscles. This
leads to muscle wasting, further weakening the muscles.
Myopathy is often associated with abnormal bone
formation. Additional symptoms include fatigue, general
weakness throughout the day, or gradual weakness with
exertion.

5. Myopathy Diagnosis: Diagnosis is based on medical
history, physical examination, muscular strength, and
balance assessments. Various tests are performed depending
on the medical history and physical examination. Blood
tests and electrolyte analysis are among these tests.
Electromyography (EMG), an electrical test that evaluates
muscle function by using needles to detect different aspects
of muscle movement and structure, is another diagnostic
tool. Certain types of myopathy may be diagnosed with the
help of special tests, including muscle biopsies and genetic
analysis [20].

6. EMG for Muscle Analysis: A significant portion of the
examination of patients with neuromuscular diseases
involves electrodiagnostic tests. The main purpose of
electromyography (EMG) is to supplement clinical
examinations. EMG is used to diagnose peripheral nervous
system problems. The muscles, primary motor neurons,
primary sensory neurons, nerve roots, brachial and
lumbosacral plexuses, peripheral nerves, and neuromuscular
junctions are among the structures affected. These
investigations also provide helpful diagnostic information
for central nervous system diseases [21].
EMG records the electrical activity of muscles and is used
to determine abnormalities related to neuromuscular
activity. The EMG is acquired using surface electrodes or
needle electrodes, which are placed or inserted into specific
muscles under investigation.

EMG analysis of amyotrophic lateral sclerosis (ALS) and 
myopathy conditions provides insights into the performance 
of muscular activity in subjects with paralysis [28]. Features 
are the distinctive pattern representations of reduced-
dimensional signals. The goal of feature extraction is to 
identify traits that are exceptionally distinctive and 
informative. Time-domain (TD), frequency-domain (FD), 
and time-frequency-domain (TFD) features are used to 
study the EMG characteristics. TD represents signal 
characteristics as a function of time. FD represents the 
signal characteristics as a function of frequency, and the 
frequency spectrum of the signal indicates the frequencies 
contained in the signal. TFD features provide information 
about both the temporal and spectral characteristics of the 
signal. Several aspects are considered for EMG signal 
classification, including features taken individually and the 
number of features in groups analyzed in TD, FD, and TFD 
domains [22], [29]. 

The initial characteristics considered are TD features based 
on EMG signal amplitude. These characteristics are the best 
option from a computational standpoint, as they can be 
extracted directly without the need for extensive 
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mathematical processing. The following twelve common 
TD characteristics are evaluated: mean, mean absolute value 
(MAV), variance, variance absolute value (VAV), 
waveform length (WL), zero crossing (ZC), root mean 
square (RMS), log detector (LD), average amplitude change 
(AAC), difference absolute standard deviation value 
(DASDV), kurtosis, and skewness.  

The most significant explanation for muscular movement 
depends on the fluctuation of energy over time. Higher 
levels of muscular activity often result in the recruitment of 
more motor units and the subsequent release of more motor 
unit action potentials (MUAPs) for EMG detection [21]. 
The classification of EMG is achieved using neural network 
models. Various types of neural network models include 

artificial neural networks (ANN), recurrent neural networks 
(RNN), and convolutional neural networks (CNN). 

III. METHODOLOGY

EMG signal analysis is based on a better understanding of 
the characteristics of the EMG signal. Understanding the 
characteristics of EMG in normal, amyotrophic lateral 
sclerosis (ALS), and myopathy conditions aids in the 
analysis of both normal and paralyzed states. 

EMG signals are generated by action potentials at the 
muscle fiber membrane resulting from depolarization and 
repolarization processes. The amplitude of the EMG signal 
can range from -5000 microvolts to +5000 microvolts. 

Fig. 5 (a) EMG signal pattern of normal condition [23] 

The frequency content ranges between 1 Hz and 10 kHz. 
The sampling rate is selected to be greater than or equal to 
the Nyquist rate of the signal. This sampling rate ensures 
that the processing unit fully captures the signal’s frequency 

spectrum. Figure 5 (a) shows the EMG signal pattern under 
normal conditions. EMG in amyotrophic lateral sclerosis 
(ALS) shows the presence of fasciculations. Additionally, 
fibrillations and positive sharp waves are observed. 

Fig. 5 (b) EMG signal pattern of ALS condition [23] 

ALS data also show decreased conduction velocity, 
extended distal motor delay, and decreased compound 
muscle action potential (CMAP) [24]. Figure 5 (b) depicts 
the EMG signal pattern in ALS. In myopathy conditions, the 

presence of abnormal spontaneous activity is observed. As a 
result, each motor unit action potential (MUAP) is 
generated by fewer motor fibers. 

Fig. 6 EMG signal pattern of myopathy condition [23] 
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MUAPs become polyphasic, short in duration, and low in 
amplitude [25]. Figure 6 shows the EMG signal pattern in 
myopathy conditions. In the present work, the dataset [26] 
used consists of EMG signals recorded from needle 
electrodes. The electrode insertion levels are low, medium, 
and deep. The recordings were performed during steady 

isometric contractions. The sampling frequency of the EMG 
signals is set to 23.435 kHz. The block diagram for the 
method used is shown in Figure 7. The amplitude of the 
EMG lies between -5 mV and +5 mV. The EMG has a 
sampling rate of 23.435 kHz. 

Fig. 7 Time Domain Feature Extraction and Classification of EMG Data 

Rectangular windows of 300.37 ms with a 99.84 ms overlap 
are utilized for feature extraction. A total of 110 segments 
were produced from 11.20 seconds of data using the 
window approach. Each segment consists of a sample size 
of 7040 sample values and an overlapping sample size of 
2340 sample values. Features in the time domain are 
extracted from each segment of the EMG dataset. In this 
work, twelve features are considered. The EMG features 
considered in this work include the mean value, variance, 
mean absolute value, root mean square, waveform length, 
zero crossing, log detector, difference absolute standard 
deviation value, average amplitude change, variance 
absolute value, kurtosis of the signal, and skewness of the 
signal. The features obtained are used for analysis. 

The EMG features are described as follows: 

1. Mean: The mean EMG value provides the overall
innervation input of a chosen muscle for a specified task or
work. EMG activity is a measure of the amount of muscle
contraction and the number of contracted muscles.

2. Variance: Variance of EMG signal (VAR) gives the
signal power. The calculation of variance is shown in
equation (1).

 2
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3. Mean Absolute Value: The mean absolute value (MAV)
is the average of the summation of absolute value of signal.
The MAV is calculated using equation (2).
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4. Root Mean Square: The root mean square (RMS) value is
the square root of average power of the signal for a
specified time interval. RMS value describes the muscle
information. The RMS is calculated using equation (3).
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5. Waveform Length: The waveform length (WL) is the
cumulative length of the waveform over the segment. WL

value represents the amplitude, frequency, and duration. 
WL is a measure of complexity of the EMG signal. WL is 
calculated using equation (4). 
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6. Zero Crossing: The zero crossing (ZC) measures the
frequency information. The number of times the sign of the
signal value changes divided by the length of the segment.
ZC is calculated using equation (5).
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7. Log Detector:  The log detector (LD) estimates the
exerted force. LD is calculated using equation (6).
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8. Difference Absolute Standard Deviation Value: The
difference absolute standard deviation value (DASDV) can
be expressed as in Equation (7).
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9. Average Amplitude Change: The average amplitude
change (AAC) can be formulated as in Equation (8)
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10. Variance Absolute Value: The variance absolute value
can be expressed as in Equation (9).
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11. Kurtosis: Indicates the peakedness of the signal and
describe the contraction of the muscles. Kurtosis is obtained
using equation 10.

Kurtosis = ((Fourth Moment) / (Second Moment)2)    (10) 

12. Skewness: Distribution symmetry is measured by
skewness. Skewness is obtained using equation (11).

Skewness = ((3*(mean-median)) / (standard deviation)) (11) 

IV. RESULTS AND DISCUSSION

The time domain features extracted in the present work are 
analyzed statistically using statistical F-test.  

TABLE I STATISTICAL F-TEST ANALYSIS FOR TIME DOMAIN FEATURES 

Sl. No. Time Domain 
EMG Features 

Data Sets compared 
in the Test p - Value 

1 Mean 
normal, ALS 0.03667 
normal, myopathy 0.04674 
ALS, myopathy 0.00005857 

2 Variance 
normal, ALS 2.22e-16 
normal, myopathy <0.05 
ALS, myopathy <0.05 

3 MAV 
normal, ALS 6.661e-16 
normal, myopathy 3.007e-8 
ALS, myopathy <0.05 

4 RMS 
normal, ALS <0.05 
normal, myopathy 1.194e-9 
ALS, myopathy <0.05 

5 WL 
normal, ALS 2.22e-16 
normal, myopathy 4.441e-16 
ALS, myopathy <0.05 

6 ZC 
normal, ALS 1.67e-9 
normal, myopathy <0.05 
ALS, myopathy 7.772e-15 

7 LD 
normal, ALS -4.441e-16
normal, myopathy 2.767e-10 
ALS, myopathy 0.002471 

8 DASDV 
normal, ALS 6.661e-16 
normal, myopathy 6.66e-16 
ALS, myopathy <0.05 

9 AAC 
normal, ALS 2.22e-16 
normal, myopathy 4.441e-16 
ALS, myopathy <0.05 

10 VAV 
normal, ALS 4.441e-16 
normal, myopathy 0.4953 
ALS, myopathy <0.05 

11 Kurtosis 
normal, ALS 2.22e-15 
normal, myopathy -1.332e-15
ALS, myopathy <0.05 

12 Skewness 
normal, ALS <0.05 
normal, myopathy 1.533e-9 
ALS, myopathy <0.05 
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The features are found to be statistically significant with p 
<0.5, for analysis. Table I show the p-values obtained from 
F-test.

The figures 8(a), 8(b), and 8(c) show the mean value 
extracted in time domain for ALS, myopathy, and Normal 
data. 

Fig. 8(a) Mean value of ALS Data 

Fig. 8(b) Mean value of Myopathy Data 

Fig. 8(c) Mean value of Normal Data 

Figures 8(a), 8(b), and 8(c) show that ALS and myopathy 
data have greater mean peak values than normal data. 
Muscle fatigue is higher in ALS and myopathy subjects. 

Figures 9(a), 9(b), and 9(c) show the variance values 
extracted in the time domain for ALS, myopathy, and 
normal data. 
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Fig. 9(a) VAR value of ALS Data 

Fig. 9(b) VAR value of Myopathy Data 

Fig. 9(c) VAR value of Normal Data 

Figures 9(a), 9(b), and 9(c) show that ALS data have a 
higher variance peak than normal data. Myopathy data have 
a lower variance peak than normal data. Figures 10(a), 

10(b), and 10(c) show the mean absolute value (MAV) 
extracted in the time domain for ALS, myopathy, and 
normal data. 

Fig. 10(a) MAV value of ALS Data 
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Fig. 10(b) MAV value of Myopathy Data 

Fig. 10(c) MAV value of Normal Data 

Figures 10(a), 10(b), and 10(c) show that MAV values in 
ALS and myopathy subjects indicate increased motor 
recruitment to produce constant muscle force during 

isometric contractions. Figures 11(a), 11(b), and 11(c) show 
the root mean square (RMS) values extracted in the time 
domain for ALS, myopathy, and normal data. 

Fig. 11(a) RMS value of ALS Data 

Fig. 11(b) RMS value of Myopathy Data 
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Fig. 11(c) RMS value of Normal Data 

Figures 11(a), 11(b), and 11(c) show that the root mean 
square values describe the force or torque produced by the 
muscles. To maintain the isometric position, the torque 
produced in ALS and myopathy subjects is greater 

compared to normal subjects. Figures 12(a), 12(b), and 
12(c) show the waveform length (WL) values extracted in 
the time domain for ALS, myopathy, and normal data. 

Fig. 12(a) WL value of ALS Data 

Fig. 12(b) WL value of Myopathy Data 

Fig. 12(c) WL value of Normal Data 
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Figures 12(a), 12(b), and 12(c) describe the increased 
complexity due to higher cumulative values. Figures 13(a), 
13(b), and 13(c) show the zero crossing (ZC) values 

extracted in the time domain for ALS, myopathy, and 
normal data. 

Fig. 13(a) ZC value of ALS Data 

Fig. 13(b) ZC value of Myopathy Data 

Fig. 13(c) ZC value of Normal Data 

Figures 13(a), 13(b), and 13(c) show that ALS and 
myopathy data have higher ZC rates than normal data. 
Figures 14(a), 14(b), and 14(c) show the largest deviation 

(LD) values extracted in the time domain for ALS, 
myopathy, and normal data. 
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Fig. 14(a) LD value of ALS Data 

Fig. 14(b) LD value of Myopathy Data 

Fig. 14(c) LD value of Normal Data 

Figures 14(a), 14(b), and 14(c) show the LD values, which 
describe the exerted muscle force. Figures 15(a), 15(b), and 
15(c) show the difference absolute standard deviation value 

(DASDV) extracted in the time domain for ALS, myopathy, 
and normal data. 

Fig. 15(a) DASDV value of ALS Data 
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Fig. 15(b) DASDV value of Myopathy Data 

Fig. 15(c) DASDV value of Normal Data 

Figures 15(a), 15(b), and 15(c) show the range of DASDV 
values in ALS, myopathy, and normal data. 
Figures 16(a), 16(b), and 16(c) show the average amplitude 

change (AAC) value extracted in the time domain for ALS, 
myopathy, and normal data. 

Fig. 16(a) AAC value of ALS Data 

Fig. 16(b) AAC value of Myopathy Data 
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Fig. 16(c) AAC value of Normal Data 

Figures 16(a), 16(b), and 16(c) show the range of AAC 
values in ALS, myopathy, and normal data. Figures 17(a), 
17(b), and 17(c) show the variance absolute value (VAV) 

extracted in the time domain for ALS, myopathy, and 
normal data. 

Fig. 17(a) VAV value of ALS Data 

Fig. 17(b) VAV value of Myopathy Data 

Fig. 17(c) VAV value of Normal Data 
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Figures 17(a), 17(b), and 17(c) show that ALS data have a 
higher VAV peak than normal data. Myopathy data have a 
lower VAV peak than normal data. Figures 18(a), 18(b), 

and 18(c) show the kurtosis values extracted in the time 
domain for ALS, myopathy, and normal data. 

Fig. 18(a) Kurtosis value of ALS Data 

Fig. 18(b) Kurtosis value of Myopathy Data 

Fig. 18(c) Kurtosis value of Normal Data 

Figures 18(a), 18(b), and 18(c) show that ALS and 
myopathy data have higher kurtosis peak values than 
normal data. The decrease in muscle contractions yields an 
increase in kurtosis values. ALS and myopathy subjects, 

possessing muscle weakness, show decreased muscle 
contractions. Figures 19(a), 19(b), and 19(c) show the 
skewness values extracted in the time domain for ALS, 
myopathy, and normal data. 
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Fig. 19(a) Skewness value of ALS Data 

Fig. 19(b) Skewness value of Myopathy Data 

Fig. 19(c) Skewness value of Normal Data 

Figures 19(a), 19(b), and 19(c) show that ALS and 
myopathy data have higher skewness peak values than 
normal data. The range of skewness values is greater in 
ALS and myopathy data compared to normal data. 

V. CONCLUSION

The major characteristics of biomedical signals are 
continuous in nature. The graphical representation of these 
signals concerning some function of the time parameter is 
required to analyze these time-series signals. The general 
plot typically has amplitude along the time axis. Almost all 
signals in their natural form are in the time domain; hence, 
the signals are represented with a time-amplitude plot. The 
analysis of the EMG signal in the time domain provides 

information regarding variations in amplitude with respect 
to time. Twelve statistical features are considered for the 
analysis of paralysis diseases. From the statistical F-test 
analysis, all 12 features are found to be significant in 
differentiating normal data from ALS and myopathy data, 
thus distinguishing paralysis data with p < 0.05. 
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	Fig. 4 Symptoms of ALS [19]



