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Abstract - Emotional analytics is a fascinating blend of 
psychology and technology, with one of the primary methods for 
recognizing emotions involving facial expression analysis. Facial 
emotion detection has advanced significantly, utilizing deep 
learning algorithms to identify common emotions. In recent 
years, substantial progress has been made in automatic facial 
emotion recognition (FER). This technology has been applied 
across various industries to enhance interactions between 
humans and machines, particularly in human-centered 
computing and the emerging field of emotional artificial 
intelligence (EAI). Researchers focus on improving systems’ 
capabilities to recognize and interpret human facial expressions 
and behaviors in diverse contexts. The impact of convolutional 
neural networks (CNNs) on this field has been profound, as 
these networks have undergone significant development, 
leading to diverse architectures designed to address increasingly 
complex challenges. This article explores the latest 
advancements in automated emotion recognition using 
computational intelligence, emphasizing how contemporary 
deep learning models contribute to the field. It provides a review 
of recent developments in CNN architectures for FER over the 
past decade, demonstrating how deep learning-based methods 
and specialized databases collaborate to achieve highly accurate 
outcomes. 
Keywords: Facial Emotion Recognition (FER), Deep Learning 
Algorithms, Convolutional Neural Networks (CNNS), 
Emotional Artificial Intelligence (EAI), Human-Centered 
Computing 

I. INTRODUCTION

Emotions profoundly impact the human experience, shaping 
our interactions, decisions, and overall well-being. Emotion 
plays a crucial role in our daily lives, reflecting our intentions 
and mental and physical conditions [1], [2]. Human 
emotional states can be deduced from verbal and non-verbal 
cues gathered through various sensors, including 
physiological signals, facial expressions, and voice tone [3]. 
Understanding and recognizing emotions is essential not only 
for advancing human-machine interaction but also for its role 
in mental health support applications and enhancing 
customer satisfaction across different sectors [4]. There is a 
growing expectation for interactive machines to recognize, 
interpret, and express emotions in ways comparable to human 
behavior [5]. This shift has increased the demand for 
machine-human interaction systems where users anticipate 
machines to demonstrate a full spectrum of emotions. 

Consequently, the development of emotion recognition 
systems that can accurately interpret and respond to human 
emotions is essential for fostering more seamless and 
efficient interactions between humans and machines [6]. 

Facial expressions often act as key indicators of a person’s 
emotional state, which is why numerous researchers are 
particularly focused on this modality [7]. Studies have 
demonstrated that emotional information is conveyed 
through multiple channels: 55% visual, 38% vocal, and only 
7% verbal [8], [9]. Facial expressions are powerful, natural, 
and universal indicators of emotions and thoughts, 
transcending gender, ethnicity, and nationality [10]. Facial 
emotion recognition is gaining importance in the modern 
world, with applications in security, clinical psychology, 
evaluating blood pressure and stress levels, neurology, law 
enforcement, multimodal human-computer interfaces, and 
human-computer interaction. These applications aim to 
enhance communication and understanding between humans 
and machines by detecting emotions such as happiness, 
sadness, calmness, and neutrality [11], [12], [13]. 

Automatic facial emotion recognition is a vital research area 
that bridges psychological understanding of human emotions 
and artificial intelligence (AI). The techniques and 
algorithms developed in this domain can reveal the body’s 
internal mechanisms, enabling early disease detection and 
offering insights into mental states without requiring direct 
inquiry [11], [14]. Early face recognition research primarily 
relied on images captured in controlled settings. However, 
recognizing the limitations of image-based methods, 
researchers hypothesized that incorporating temporal or 
spatio-temporal data from videos could improve recognition 
accuracy. This led to the collection of several video-based 
facial datasets between 2000 and 2010 [7]. By 2010, deep 
neural networks had achieved notable success in object 
recognition, attracting considerable attention and prompting 
researchers to explore their applications across various fields 
[15]. 

Deep learning can be utilized for emotion detection and facial 
expression analysis. However, its effectiveness is influenced 
by the size of the dataset, with larger datasets generally 
yielding better results [16]. Currently, the available datasets 
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for facial expression analysis remain too limited for optimal 
deep learning implementation. To address this, some 
researchers use data augmentation methods in the pre-
processing phase, including techniques like scaling, 
cropping, mirroring, and translation, which enhance data 
variability and effectively increase dataset size. These pre-
processing strategies have been shown to significantly boost 
deep learning performance [17], [18], [19]. 

A. Steps Involve in Facial Emotion Classification

Facial emotion recognition (FER) comprises three key 
stages: preprocessing, feature extraction, and emotion 
identification. For preprocessing, several methods are used, 
including face detection, background removal, keyframe 
extraction, and facial landmark detection [20].  

Face detection utilizes various algorithms such as the Multi-
Task Cascaded Convolutional Network (MTCNN), the 
Viola-Jones Detector [21], the light and fast face detector, 
tiny face detection, FaceNet, the Caffe-based face detector, 
the Haar feature-based cascade detector, and the Single Stage 
Headless (SSH) detector. Libraries such as OpenFace, 
OpenCV, and Dlib are used for landmark extraction and face 
detection, enabling the isolation of key facial regions while 
minimizing background noise [2], [22], [23]. 

Since 2014, deep neural networks (DNNs) have been 
successfully utilized in face recognition systems, driven by 
improvements in processing power and the increased 
availability of large, multilabel datasets [24]-[26]. The 
DeepFace technique [24], which employs DNNs, achieved a 
face recognition accuracy of approximately 97.35% on the 
Labeled Faces in the Wild (LFW) dataset, which contains 
thousands of face images captured in uncontrolled 
environments - closely matching human performance levels 
(97.53%). Since then, accuracy on the LFW dataset has 
improved to as high as 99.80% [27]. Despite being nonlinear, 
appearance-based methods, DNN-based approaches are 
widely used in recent facial recognition studies and have 
shown superior performance compared to other methods. 

While DNN techniques provide high accuracy for both face 
identification and verification tasks using images, 
demonstrating resilience in challenging conditions, such as 
varying lighting, occlusions, and facial expressions, remains 
an area of active research [28]. These methods show strong 
performance when applied to large datasets of high-quality 
images, even those captured in uncontrolled environments 
with diverse lighting, poses, and expressions. However, 
significant drops in recognition accuracy have been observed 
when images are affected by severe illumination changes, 
noise, or low resolution [28]. In such adverse conditions, 
video-based methods may offer valuable insights into facial 
dynamics, potentially improving recognition performance. 

Recent advancements in face detection have yielded 
successful outcomes using deep learning techniques [29], 
[30], [31]. One notable approach is Faster R-CNN, which 

employs region proposals and was originally introduced for 
object detection [32], [33]. Additionally, some deep learning-
based face detection techniques employ a sliding-window 
approach, scanning the image across various scales and 
positions to detect facial regions effectively [34], [35], [36]. 
The Single Shot Detector (SSD), initially designed for object 
detection, has also proven effective in face detection 
applications [37], [38]. 

B. Feature Extraction

Facial feature extraction techniques can be classified into 
geometric-based approaches, which represent facial points to 
create feature vectors from a geometrical perspective, and 
appearance-based techniques, such as Gabor Wavelets, 
which extract features from focused or comprehensive facial 
images. Accurate feature extraction from one face to another 
is a challenging task, critical for effective classification and 
analysis. The choice of features in FER significantly impacts 
performance, making feature extraction a crucial and 
carefully considered step.  

Feature extraction efforts often incorporate the Facial Action 
Coding System (FACS), which monitors how facial muscles 
contract and relax at different intensity levels. FACS has been 
refined over time to improve its accuracy and robustness in 
recognizing subtle facial movements [39]. Other traditional 
methods for facial feature extraction include Local Binary 
Patterns (LBP) [40], Histogram of Oriented Gradients 
(HOG), and Local Directional Patterns (LDP) [41]. These 
techniques focus on capturing texture and gradient-based 
information from images to enhance feature extraction 
accuracy. 

When designing deep convolutional neural networks (CNNs) 
for feature extraction, the choice of an effective loss function 
and the selection of a suitable network architecture are two 
critical factors to consider. CNN architectures are generally 
categorized as either backbone networks or multi-network 
systems. Following their impressive results in ImageNet 
competitions, models such as SENet, VGGNet, AlexNet, 
ResNet, and GoogleNet, which are considered standard CNN 
architectures, have been widely studied by researchers [7].  

These networks, along with their variants, have been 
extensively applied in facial recognition tasks. Moreover, 
multi-structure networks have been developed to facilitate 
multi-task learning, enabling simultaneous tasks such as face 
recognition and other related objectives [42], [43]. 

Selecting an appropriate loss function is essential for training 
deep CNNs in face recognition. Research indicates that 
relying solely on softmax loss is inadequate for effective 
feature separation, primarily because intra-class variation 
often exceeds inter-class variation. Consequently, alternative 
loss functions have been introduced to improve feature 
discrimination [7]. The structure of CNNs is illustrated in 
Figure 1. 
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C. Classification

Emotion classification follows feature extraction in FER, 
utilizing various algorithms such as conventional learning 

methods and CNNs, with the latter being highly efficient and 
accurate. The variability of human emotions makes context-
based classification challenging. 

Fig. 1 Standard CNN architecture along with its feature extraction convolutional pool [39] 

Deep learning (DL) has proven to be a highly effective 
method, primarily due to its ability to automatically extract 
features and classify data using architectures such as 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs). This success has motivated researchers to 
leverage these techniques for human emotion recognition. 
Significant efforts have been made to develop deep neural 
network architectures, leading to impressive results in this 
domain. Among these, CNNs are the most widely employed 
classification algorithms, as they can be directly applied to 
input images without requiring separate facial detection or 
feature extraction processes. CNNs include convolutional 
layers that reduce the input data by acquiring relevant 
features and producing feature maps with the help of various 
feature detectors [44]. The convolutional layer condenses the 
input while identifying key features, resulting in feature maps 
utilized by different feature detectors. 

This paper reviews recent advances in emotion sensing 
through facial expression recognition using various DL 
architectures. We present findings from 2014 to 2024, 

interpreting the challenges and contributions in this field. The 
paper is organized as follows: Section II presents the latest 
state-of-the-art techniques in facial expression recognition 
using deep learning; Section III introduces some publicly 
available databases that facilitate facial emotion recognition; 
and Sections IV and V provide a discussion and comparison 
of the methods, concluding with a summary and suggestions 
for future work. 

II. FACIAL EMOTION RECOGNITION (FER) USING
CONVOLUTIONAL NEURAL NETWORKS

FER has made significant strides with the emergence of deep 
learning, moving away from the traditional handcrafted 
feature methods it once depended on [45]. Over the past 
decade, there has been a growing preference among 
researchers for DL due to its superior ability to automatically 
recognize hidden patterns. This section reviews recent 
studies in FER that utilize CNNs to enhance detection 
performance. CNNs are well-suited for FER and other 
computer vision applications.  

Fig. 2 The overall pipeline for deep facial expression recognition systems [46] 
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Early 21st-century research in the FER literature indicated 
that CNNs outperform multilayer perceptrons (MLPs) and 
provide strong results when managing scale variations and 
changes in face location, excelling in handling previously 
unseen variations in facial pose [46], [47]. CNNs, a prevalent 
type of DL architecture, are recognized for capturing higher-
level abstractions by employing a hierarchical structure with 
multiple nonlinear representations and transformations [48]. 
Figure 2 illustrates the overall pipeline of deep facial 
expression recognition systems. 

These methods are tested and trained on various static or 
sequential databases to improve accuracy and robustness in 
emotion recognition. 

A. Popular CNN Architectures used for Facial Emotion
Recognition

1. AlexNet: The DeepFace study [24] demonstrated that deep
learning networks, particularly those successful in object
recognition, could also excel in face recognition. This study
employed an AlexNet architecture combined with the
softmax loss function, trained on a large dataset of facial
images. The result of 97.33% represents an impressive test
performance on the Labeled Faces in the Wild (LFW) dataset, 
which consists of labeled facial images. This performance
approaches human-level accuracy, marking a substantial leap
in face recognition technology. In 2014, the DeepID2 model,
built on the AlexNet architecture and employing contrastive
loss, achieved an impressive 99.15% accuracy on the
CelebFaces+ dataset [49].

2. VGG-Net: The study by [50] presents DeepID3, an
advanced deep neural network architecture for face
recognition that utilizes stacked convolutional and inception
layers, inspired by VGGNet and GoogLeNet, to enhance
feature extraction. Preprocessing involves adding joint face
identification-verification supervisory signals and employing
data augmentation techniques, such as varying positions,
scales, and color channels of face regions, to improve
robustness. The architecture’s increased depth addresses
performance issues by enabling more complex feature
extraction, resulting in an impressive 99.53% accuracy for
face verification and 96.0% for face identification using the
LFW dataset, surpassing previous models like DeepID2+.
However, the study calls for further research to assess the
model’s effectiveness in diverse and uncontrolled
environments.

3. MTCCNN: In Zhang et al., [51], a novel framework was
introduced that employs multi-task learning to combine face
detection and alignment, utilizing cascaded CNNs. The
framework consists of three stages: the Proposal Network (P-
Net), which generates candidate windows; the Refine
Network (R-Net), responsible for filtering out non-face
candidates; and the Output Network (O-Net), which ensures
precise facial landmark localization. The framework
incorporates an online hard sample mining strategy that
dynamically selects informative training samples, leading to

significant improvements over state-of-the-art techniques on 
benchmarks like the WIDER FACE dataset, FDDB, and 
AFLW. While the results demonstrate enhanced accuracy 
and efficiency in challenging conditions, critiques highlight 
potential model complexity and reliance on large annotated 
datasets, suggesting a need for further research into 
unsupervised learning techniques and the integration of 
contextual information to improve performance in diverse 
environments. 

4. GoogleNet: FaceNet [26], introduced by Schroff et al., in
2015, revolutionized face recognition by leveraging
GoogleNet to map face images to a compact Euclidean space
through deep convolutional neural networks (CNNs) and a
triplet loss function. The model incorporates preprocessing
techniques, including tight cropping of face thumbnails, and
applies data augmentation strategies such as flipping and
random cropping to improve robustness against variations in
pose and lighting conditions. Its architecture features
interleaved layers of convolutions and pooling, optimizing
performance by reducing parameters while maintaining
accuracy. FaceNet achieved an impressive accuracy of
99.63% on the Labeled Faces in the Wild (LFW) dataset,
surpassing previous methods and proving its effectiveness in
real-world face recognition applications.

5. VGG-Net 16: Parkhi et al., [52] proposed VGGFace,
implementing preprocessing steps like 2D affine alignment
and augmenting the data using random cropping and flipping
techniques to enhance training data diversity. The model
architecture is based on the VGGNet-16 network with triplet-
loss embedding, effectively addressing performance issues
related to discriminative learning. This approach led to a
significant 68% reduction in error rates on benchmarks like
YouTube Faces and the Labeled Faces in the Wild (LFW),
demonstrating the effectiveness of simpler architectures in
achieving state-of-the-art results. The findings highlight the
critical balance between data quality and model design for
optimal performance.

6. ResNet: The authors in [53] investigate the effectiveness
of the Congenerous Cosine (COCO) loss function in
enhancing facial recognition through a ResNet architecture,
achieving a face verification accuracy of 99.86% on the
Labeled Faces in the Wild (LFW) dataset and 76.57% in the
MegaFace challenge with 1 million distractors. By
optimizing cosine distances, COCO improves intra-class
similarity and inter-class variation, demonstrating significant
advantages over traditional loss functions. The authors
conclude that COCO provides a stable and effective approach 
for learning discriminative features. Since 2017, many
proposed methods have favored the use of the ResNet
architecture and its variations [54], [55], [56].

7. 3D CNNs: Numerous researchers [57], [58] have
employed deep 3D convolutional networks (3D CNNs) and
contributed to refining their architecture for emotion
recognition, owing to their advanced capabilities in image
recognition [59]. For example, various methods have utilized
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RGB frames fused by leveraging the temporal dimension 
using the eNTERFACE05 dataset [60]. 3D CNNs utilize 3D 
convolutional filters to capture essential features from 
compressed sequences of RGB frames, allowing for the 
extraction of information in both the spatial and temporal 
domains [61]. 
 
8. Hybrid CNN: A hybrid approach combining Long Short-
Term Memory (LSTM) networks and convolutional neural 
networks (CNNs) has been employed for facial emotion 
recognition using a video dataset. In this approach, the CNN 
is responsible for feature extraction in individual frames, 
whereas the LSTM captures the temporal relationships by 
integrating these features across multiple frames [62]. 
 
B. Related Work 
 
Simonyan [26] introduced a two-stream convolutional neural 
network (ConvNet) architecture designed to effectively 
capture both temporal and spatial information, enhancing 
performance in action recognition. The spatial stream 
processes individual video frames for appearance features, 
while the temporal stream analyzes dense optical flow for 
motion. Utilizing multi-task learning across datasets like 
UCF-101 and HMDB-51, the model achieved significant 
performance improvements, with a 6% increase over the 
temporal stream and a 14% increase over the spatial stream 
when fused. Cheng et al., [27] tackled the challenge of facial 
expression recognition under partial occlusion, proposing a 
new approach that combines Gabor features with a deep 
learning framework. The preprocessing steps include 
segmenting and normalizing facial images. The architecture 
consists of three hidden layers designed to effectively 
compress high-dimensional Gabor features, addressing 
performance issues related to occlusion by fine-tuning the 
model through gradient descent. Evaluation was performed 
using the JAFFE database, where the proposed method 
achieved an overall accuracy of 85.71%, with specific 
accuracies of 82.86% for mouth occlusion and 81.45% for 
eye occlusion, demonstrating significant improvements over 
traditional methods. 
 
Li et al., [64] introduced a novel approach for facial 
expression recognition (FER) using a 2-channel CNN, 
combining a convolutional autoencoder with a standard CNN 
for feature extraction. By leveraging unsupervised learning, 
the model achieved impressive results on the JAFFE dataset, 
surpassing previous methods with an average accuracy of 
95.8% in a leave-one-out experiment and 94.1% in a ten-fold 
cross-validation experiment. Zhang et al., [65] investigated 
domain-specific data augmentation in face recognition 
through a novel face synthesis method applied to the CASIA 
WebFace dataset. By introducing pose, shape, and expression 
variations, a CNN was trained to achieve state-of-the-art 
results comparable to systems trained on millions of images. 
The approach demonstrated significant performance 
improvements, with notable enhancements in metrics such as 
True Accept Rate (TAR) at False Accept Rate (FAR) of 0.01 
and 0.001. 

Wang et al., [17] proposed a network architecture that 
includes four inception layers and two convolutional layers 
with max pooling, designed to efficiently extract intricate 
facial expression features. The study demonstrated improved 
performance compared to traditional methods, revealing 
enhanced recognition accuracy across multiple datasets. In 
[18], the system they developed employs a CNN architecture 
consisting of two convolutional layers, two sub-sampling 
layers, and one fully connected layer designed for the 
extraction of higher-level visual features essential for 
expression recognition. The proposed system integrated 
preprocessing steps such as correcting rotated data, cropping, 
down-sampling, and intensity normalization. Additionally, 
data augmentation was employed to enhance the database 
size and improve the model’s robustness. By combining these 
elements, the system effectively addresses limited data 
challenges, learns intricate patterns, and achieves promising 
accuracy improvements in facial expression recognition 
tasks. 
 
Sahli et al., [66] proposed a Deep Fusion Convolutional 
Neural Network (DF-CNN) for multimodal 2D+3D FER, 
integrating both 2D and 3D facial data through six distinct 
types of 2D attribute maps. The architecture utilizes 
convolutional layers, ReLU, and pooling layers for feature 
extraction, followed by fusion layers that merge the extracted 
features to produce a 32-dimensional fused deep feature. 
Preprocessing involves generating attribute maps from 3D 
scans, while data augmentation techniques are applied to 
enhance training. The CNN architecture addresses 
performance by taking advantage of pre-trained models and 
random initialization. 
 
In [67], a hybrid model was introduced that combines CNNs 
and recurrent neural networks (RNNs) for FER. The CNN 
component handled the spatial features by extracting them 
from individual frames, while the RNN was responsible for 
capturing the temporal dependencies present across the 
sequences of frames. An overall accuracy of 91.20% was 
initially achieved by the model, which later improved to 
94.46% with the incorporation of Rectified Linear Units 
(ReLU) activation. The CNN architecture has six 
convolutional layers with increasing filter sizes (8, 16, 32, 64, 
128, and 256) and employs max-pooling layers to reduce 
dimensionality, addressing overfitting issues through dropout 
techniques. 
 
In [12], a CNN model was developed for recognizing 
students’ facial expressions using the FER 2013 database. 
This model, comprised of four convolutional layers and four 
max-pooling layers, achieved a 70% accuracy rate after 106 
training epochs. It effectively identified happy and surprised 
expressions but struggled with fearful expressions, often 
misclassifying them as sad. Zhai et al., [68] explored the 
automatic recognition of students’ cognitive states in e-
learning environments through facial expressions using a 
hybrid CNN model. By combining CNN-extracted features 
with manually engineered pose estimator features, the 
accuracy achieved by the model was 51.9% on a real-time e-
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learning dataset, surpassing existing methods. Performance 
varied across datasets, with percentages ranging from 
33.15% to 53.42% for DAiSEE, 51.28% to 99.95% for CK+, 
and 21.42% to 85.7% for JAFFE. 

Zhang et al., [69] proposed a method for FER by combining 
a Local Gravitational Force Descriptor with deep 
convolutional neural networks (DCNN). The technique 
involved preprocessing steps such as image rotation and data 
augmentation to enhance dataset diversity. The DCNN 
architecture featured two branches for extracting local and 
holistic features, achieving impressive results with average 
recognition accuracies of 78% for FER2013, 98% for JAFFE, 
98% for CK+, 96% for KDEF, and 83% for RAF databases. 

In [70], advancements in facial emotion recognition (FER) 
were explored through the application of transfer learning 
(TL) within DCNNs. The authors introduced a novel FER 
method that incorporated TL with a pipeline training strategy, 
resulting in impressive accuracy of 99.52% on the JAFFE 
dataset and 98.78% on the KDEF dataset, demonstrating the 
effectiveness of their approach. The architecture of the CNN 
involved using pre-trained models with modified upper dense 
layers tailored for emotion recognition, which effectively 
addressed performance issues by leveraging learned features 
and reducing overfitting through fine-tuning. 

In [71], a novel CNN architecture was presented to improve 
facial expression recognition, particularly in challenging 
conditions involving occlusions and head tilts. The model 
leveraged the Viola-Jones algorithm for face detection, while 
Local Binary Patterns (LBP) were used for feature extraction. 
It demonstrated impressive accuracy rates of 92.66% and 
94.94% in two different experimental setups using the CK+ 
and JAFFE datasets, respectively. The architecture consists 
of five convolutional layers, a fully connected layer, and a 
softmax layer, which work together to effectively extract 
features and classify emotions, ultimately enhancing the 
overall performance of the system. 

In [72], a novel facial recognition technique was introduced 
that merges a one-dimensional DCNN with linear 
discriminative analysis (LDA). This method involves 
preprocessing images from the MUCT dataset through 
grayscale conversion and histogram equalization, followed 
by face detection using the Viola-Jones algorithm and feature 
extraction via LDA. The model was trained on 70% of the 
dataset, and evaluation was conducted on the remaining 30%, 
attaining flawless performance metrics: 100% accuracy, 
precision, recall, and F-measure. These findings illustrate the 
model’s proficiency in managing various appearances in 
facial conditions. 

In [73], a framework was created that combines Histogram 
of Oriented Gradients (HOG) and Scale-Invariant Feature 
Transform (SIFT) for feature extraction, followed by a CNN 
structure that includes three convolutional layers with max 
pooling, dense layers, and a softmax classifier. This 
architecture effectively addresses performance challenges by 

incorporating dropout layers to minimize overfitting and 
enhance generalization. The model achieved impressive 
accuracy rates of 98.48% with the HOG-CNN model and 
97.96% for the SIFT-CNN model on the CK+ dataset, as well 
as 91.43% and 82.85% on the JAFFE dataset, respectively, 
showcasing notable improvements in the reliability of 
emotion detection. 

Finally, in [74], emotion recognition was improved by 
combining facial expressions with imaging 
photoplethysmography (IPPG) signals in a multimodal 
framework. The study employed machine learning 
algorithms, including SVM, K-Nearest Neighbor (KNN), 
Decision Tree (DT), and Random Forest (RF) for processing 
IPPG signals, along with deep learning models like VGG16 
and Vision Transformer for analyzing facial expressions. It 
investigated two fusion strategies: decision-level fusion and 
feature-level fusion. Preprocessing steps included extracting 
and reconstructing IPPG signals from facial videos, followed 
by face detection using the RetinaFace algorithm. The results 
demonstrate significant improvements in accuracy, with 
feature-level fusion achieving 72.37% for arousal and 
70.82% for valence, while SVM recorded the highest 
accuracy for IPPG at 61.09% for arousal. 

In [75], a hybrid CNN-RNN model for FER was created 
utilizing the Emognition Wearable Dataset 2020, which 
includes a variety of emotions like amusement, awe, liking, 
and enthusiasm. The CNN architecture incorporates time-
distributed layers that handle sequential video frames, 
effectively capturing both spatial and temporal features. This 
design improves performance by reducing parameters and 
enhancing inference speeds. The tailored CNN-RNN model 
attained an accuracy of 66%, outperforming traditional 
methods and highlighting its potential for more nuanced 
emotion detection. 

III. DATASETS FOR FACIAL EMOTION
RECOGNITION FROM IMAGES OR VIDEOS 

Datasets designed for the recognition of emotion through 
facial images or videos have a long history, beginning with 
early studies. The demand for computational methods to 
analyze emotions has led to the creation of numerous facial 
expression datasets, which vary by acquisition environment, 
recognizable expressions, and geographical regions [39]. 
Most existing datasets primarily consist of 2D video 
sequences or static images, while a few incorporate 3D 
images. Each dataset varies significantly in terms of image 
quantity and size [3]. These datasets usually categorize the 
six basic emotions: neutral, happiness, disgust, anger, fear, 
surprise, and sadness, and they can be gathered in either 
controlled or natural settings [22]. This section presents an 
overview of several prominent and frequently utilized 
datasets for emotion recognition, accompanied by a summary 
in Table I. Over time, these datasets have also incorporated 
factors such as variations in illumination, facial poses, 
gender, demographics, ethnicity, age, image quality, and 
participant count, all of which influence their quality and the 
effectiveness of emotion recognition algorithms.  
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TABLE I OVERVIEW OF FREQUENTLY USED FER DATASETS 
Dataset and 

Reference were 
Used 

Data Configuration Types of Emotions Recognition Algorithms 
Used 

CK+ 
[71] 

(i) 593 video sequences 
(ii) 123 unique participants of diverse genders 
and backgrounds, aged between 18 and 50 
(iii) Recorded at 30 FPS with a resolution of 
either 640 × 480 or 640 × 490 

Six basic emotions, 
along with neutrality 
and contempt  
 

An innovative architecture 
featuring five convolutional 
layers, a fully connected layer 
employing ReLU activation, 
and a SoftMax layer. 

FER-2013 
[12] 

(i) A collection of 35,887 grayscale images 
sourced using google Search 
(ii) Facial images scaled to 48×48 pixels, 
showcasing a variety of expressions 

Six basic emotions and 
neutral  
 

A CNN featuring 4 
convolutional and max-
pooling layers, and 2 fully 
connected layers 

AffectNet [76] 
 

Over 440,000 images gathered from the 
internet. 

Six basic emotions and 
neutral  
 

A CNN integrating a squeeze-
and-excitation network with 
ResNet 

DISFA 
Denver Intensity 
of the 
Spontaneous 
Facial Action 
[13] 

(i) Stereo videos featuring 12 females and 15 
males from diverse ethnic backgrounds 
(ii) Image resolution of 1024 × 768 
(iii) 66 facial landmark points 
(iv) DISFA+ with 5 levels of intensity for 
twelve FACS actions 
(v) Extension of the DISFA dataset. 

Intensity of 12 AUs 
coded 

 
A hybrid model combining 
DenseNet201 and MobileNet 
V3 

KDEF 

(i) A collection of 4,900 images depicting 
human facial emotions from 70 individuals 
(ii) Taken from five distinct angles 
(iii) Comprising 35 males and 35 females aged 
between 20 and 30 
(iv) Each image has a resolution of 562 × 762 
(v) Subjects are without beards, eyeglasses, 
earrings, or mustaches, and have minimal 
makeup. 

Six basic emotions and 
neutral  
 

 

DISFA+[9] 

(i) This dataset is an extension of the DISFA 
database. 
(ii) It features manually labeled frame-based 
annotations that categorize 12 FACS facial 
actions with 5 levels of intensity. 
 

5-level intensity of 
twelve FACS Hybrid CNN 

Oulu-CASIA 
[77] 
 

2,880 videos recorded under three different 
lighting conditions. Six basic emotions Fine-tuned VGG-Face Model 

BU-3DFE [18] 
 

2,500 3D facial images captured from two 
angles: -45° and +45°. 

Six basic emotions and 
neutral  
 

Novel CNN 

JAFFE  
[64] 

(i) 213 images showcasing different facial 
expressions 
(ii) Ten distinct Japanese females 
(iii) Image resolution of 256 × 256 

Six basic emotions and 
neutral  
 

Multi-channel Convolutional 
Neural Network (MC-CNN) 
 

GEMEP FERA  
 

289 images sequences  
 

Sadness, Happy fear 
Anger, Relief  

MMI [67] 
 

2,900 videos categorized by neutral, onset, 
apex, and offset. 

Six basic emotions and 
neutral  
 

Hybrid CNN-RNN model 
with the ReLU 

SFEW   
[78] 

700 images featuring varying ages, occlusions, 
head poses and lighting conditions. 

Six basic emotions and 
neutral  
 

A novel end-to-end CNN 
architecture 

MultiPIE  
[79] 

Over 750,000 images taken from 15 angles and 
under 19 lighting conditions. 

Anger, Happy, Scream, 
Disgust, Neutral, 
Squint, Surprise  
 

CNN 

RAFD-DB [23] 
 30,000 images sourced from the real world. 

Six basic emotions and 
neutral  
 

Transfer Learning CNN 
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IV. DISCUSSION OF ADVANCEMENTS AND
METHODOLOGY ANALYSIS 

Table II presents a summary of the advancements in facial 
emotion recognition (FER) methodologies, focusing on the 

various techniques employed and their performance 
outcomes. It illustrates the effectiveness of different 
approaches in improving emotion detection capabilities 
within the field. 

TABLE II SUMMARY OF ADVANCEMENTS IN FACIAL EMOTION RECOGNITION METHODOLOGIES 

Author/Date and 
Dataset Used Advancements and Methodology Analysis 

K. Simonyan [63]

The findings of K. Simonyan [63] underscore the complementary nature of spatial 
and temporal features in action recognition tasks. The significant performance 
improvements highlight the effectiveness of the two-stream architecture in 
leveraging both types of information, which are crucial for accurately recognizing 
actions in videos. The use of multi-task learning further demonstrates the potential 
for improved model performance through the integration of diverse training data. 

Y. Cheng et al.,
[80]

Y. Cheng et al., [80] reported enhanced robustness in expression recognition for
real-world applications, where occlusion is common. However, the study’s
limitations include a small and homogeneous dataset, which may affect
generalizability, and the simulated nature of the occlusions, which do not fully
represent real-world scenarios. Future research should focus on expanding the
dataset to include diverse expressions and demographics, as well as exploring the
effects of real-world occlusions and alternative feature extraction methods to
further improve recognition accuracy and robustness.

D. Hamester et al.,
[64]

In this work, the findings demonstrate the capability of unsupervised learning in 
facial emotion recognition (FER) tasks. The results underscore the effectiveness of 
synthesizing face images for training, providing a cost-effective alternative to 
extensive data collection while maintaining competitive performance levels. 

A. Mollahosseini
et al., [17]

In their study, A. Mollahosseini et al., [17] proposed an architecture that achieved 
superior accuracy in subject-independent and cross-database evaluations compared 
to traditional CNN methods. Experimental results validate the proposed network’s 
effectiveness in achieving higher accuracy while reducing the computational 
complexity required for training, emphasizing its potential for advancing facial 
emotion recognition (FER) technology. 

A. T. Lopes et al., 
[18] 

In their study, A. T. Lopes et al., [18] included preprocessing steps and data 
augmentation to effectively address limited data challenges, learn intricate patterns, 
and achieve promising accuracy improvements in facial expression recognition 
tasks. 

H. Li et al., [66]
In their study, H. Li et al., [66] results show that the Deep Fusion Convolutional 
Neural Network (DF-CNN) outperforms alternative models, achieving an accuracy 
of 86.86%, indicating its potential for accurate facial expression recognition. 

N. Jain et al., [67]

The findings by N. Jain et al., [67] are noteworthy, as the achieved results highlight 
the model’s potential to reduce errors in emotion detection, making it valuable for 
applications in monitoring mental health and interactions between machines and 
humans. The architecture effectively captures spatial features, while the RNN 
component manages temporal dependencies, significantly improving emotion 
detection performance. 

I. Lasri [12]
The findings of I. Lasri [12] highlight the potential of using deep learning 
techniques to enhance classroom dynamics by allowing educators to adapt their 
teaching strategies based on real-time emotional feedback from students. 

K. P. Rao et al., 
[68] 

The findings of K. P. Rao et al., [68] revealed the potential of leveraging facial 
expressions to provide personalized feedback to instructors, enhancing teaching 
effectiveness and student engagement in online learning. 

K. Mohan et al.,
[69]

In their study, K. Mohan et al., [69] reported that their model outperforms twenty-
five state-of-the-art methods, emphasizing the effectiveness of integrating locally 
obtained and holistic features in deep learning models for facial expression tasks. 
By effectively combining shallow and major DCNN designs and integrating local 
and holistic features, the model demonstrated superior accuracy compared to 
traditional methods.  

M. A. H. Akhand
et al., [70]

M. A. H. Akhand et al., [70] reported results that significantly outperform
traditional feature-based methods, particularly in recognizing emotions from non-
frontal or angularly taken images, indicating the method’s potential for real-world
applications.
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A. S. Qazi et al., 
[71] 

The study by A. S. Qazi et al., [71] demonstrates that their architecture addresses 
performance issues by employing regularization techniques and optimizing 
hyperparameters, resulting in impressive accuracy. These results highlight the 
model’s potential for applications in machine-human interaction, diagnosing 
mental health, and assistive technologies, demonstrating its effectiveness in 
recognizing emotions despite common challenges. 

J. Mohammed             
et al., [72] 

The study by J. Mohammed et al., [72] shows that their architecture of the 1D-
DCNN is designed to effectively classify the 1D feature vectors extracted by linear 
discriminative analysis (LDA), addressing performance issues by optimizing 
feature representation and reducing dimensionality.  

C. Gautam et al., 
[73] 

In the work conducted by C. Gautam et al., [73], the results highlight the 
effectiveness of combining handcrafted features with deep learning, significantly 
improving emotion detection reliability, which is crucial for various real-world 
applications.  

X. Tao et al., [74] 
 

The findings of X. Tao et al., [74] highlight the effectiveness of combining 
modalities for emotion detection, offering a reliable framework applicable in 
various real-time scenarios. Moreover, the CNN architecture employs a multi-view 
feature fusion approach, effectively capturing complementary information from 
both modalities, which addresses performance issues related to single-modality 
systems.  

H. V. Manalu [75] 

H. V. Manalu [75] focused on addressing the challenge of distinguishing closely 
related emotions. The significance of these findings lies in their implications for 
enhancing human-computer interactions across various sectors, including 
healthcare and consumer analytics. 

 
V. CONCLUSION AND FUTURE DIRECTION 

 
This paper reviewed a decade of trends and perspectives on 
advancements in Facial Emotion Recognition (FER), 
highlighting developments in convolutional neural network 
(CNN) architectures. We examined various databases, 
including those with spontaneous and lab-generated images 
(see Table I), to enhance emotion detection accuracy. The 
discussion emphasizes that natural human-computer 
interaction is becoming increasingly seamless, as evidenced 
by the high accuracy achieved by researchers, which 
highlights the growing capability of machines to interpret 
emotions effectively. However, FER systems are still limited 
to basic emotions and may not capture the full complexity of 
human feelings. Future research should focus on creating 
larger databases and developing advanced deep learning 
architectures to recognize both basic and nuanced emotions. 
The adoption of deep neural networks (DNNs) marked a 
significant breakthrough in face recognition technology. 
Systems employing DNNs have attained accuracy levels 
exceeding 99%, even when tested on extensive datasets of 
facial images gathered in uncontrolled settings. However, 
several recent studies since 2018 [27], [28], [81] have 
revealed that the performance of these systems declines when 
processing images captured under challenging conditions, 
such as those with low resolution, significant lighting 
variations, blur, or noise, commonly referred to as semantic 
adversarial attacks [82]. Consequently, there is a growing 
need for research aimed at enhancing the robustness of deep 
learning methods in such adverse conditions. New 
approaches are also emerging to verify the resilience of these 
models against semantic disruptions [82]. Additionally, a 
shift from unimodal to multimodal approaches in emotion 
recognition enhances the reliability and accuracy of detection 
systems [74]. Researchers are advancing multimodal deep 
learning approaches, such as those combining audio and 

visual inputs studied by [48]. Integrating advanced feature 
extraction methods with CNN architectures improves 
performance and generalization [73]. Furthermore, there is a 
growing focus on applying FER technologies to real-world 
settings, including human-computer interaction, mental 
health diagnostics, and educational environments [14], [68]. 
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