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Abstract - In this paper, a data-driven concordance access is 
proposed for automated apprehension and allocation of 
cardiovascular abnormalities. ECG arresting is represented by 
accomplished an complete dictionary that contains prototypes 
or atoms to abstain the limitations of pre-defined dictionaries. 
The data-driven accomplished dictionaries artlessly crop the 
ECG arresting as ascribe rather than extracting appearance to 
abstraction the set of ambit that crop the a lot of anecdotic 
dictionary. The access inherently apprentices the complicated 
morphological changes in ECG waveform, which is again 
acclimated to advance the classification. The allocation 
achievement was evaluated with ECG abstracts beneath two 
altered preprocessing environments. First category, QT-
database is baseline alluvion adapted with cleft clarify and 
clarify the 60Hz ability band noise. Second category, the 
abstracts is added filtered application fast affective boilerplate 
smoother. The beginning after-effects on QT database 
confirms that our proposed algorithm shows a allocation 
accurateness of 92%. 
Keywords: Electrocardiogram, concordance learning, dispersed 
coding, classification. 

I. INTRODUCTION

Electrocardiogram (ECG) is a painless, non-invasive and 
very effective tool to record and diagnose the electrical 
activity of the heart and has been used for several decades 
[1]. ECG deviations from the normal heart rhythm often 
caused by heart abnormalities. Several methods and 
approaches for ECG feature extraction have been reported 
in the literature. However, an accurate feature extraction 
from a wide variety of ECG morphologies is a challenging 
process [2]. 

Sparse representation has already been a subject of interest 
in processing the biosignals in different applications such as 
ECG data compression [3],[4], ECG classification 
[5],[6],[2],[7], and ECG anomaly detection [8]. Fixed 
orthogonal dictionaries such those created by using wavelet 
transform, discrete cosine transform, and Fourier transform 
can decompose any signal into its basis functions. Although 
these special dictionaries are mathematically simple [4], 
However, a linear combination of those dictionary atoms 
cannot be used to create an efficient sparse representation 
model [9]and they are not suitable for to represent signals 
with few redundancies. Learning the dictionary from the 

training data itself, allows the model to be suitable to a wide 
class of signals. 

Sparse approximation is the process that allows to recover 
most of the signal information using a linear combination of 
a few atoms from a given dictionary. 

Mathematically, let 𝑌𝑌 = [𝑦𝑦1,𝑦𝑦2 , … ,𝑦𝑦𝑁𝑁]  ∈  ℝ𝑛𝑛×𝑁𝑁, 𝑌𝑌 is the 
input 𝑁𝑁 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑signal to be processed.  
A complete dictionary 𝐷𝐷 = [𝑑𝑑1,𝑑𝑑2, … .𝑑𝑑𝐾𝐾]  ∈ ℝ𝑛𝑛×𝐾𝐾.The 
signal 𝑌𝑌 can be sparsely represented by sparse coefficient 
matrix𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁]  ∈  ℝ𝐾𝐾×𝑁𝑁. 

𝑌𝑌 = 𝐷𝐷𝑋𝑋 (1) 

Where 𝑋𝑋 and 𝐷𝐷 can be found by solving the following 
approximation, 

< 𝐷𝐷,𝑋𝑋 > = arg min
𝐷𝐷,𝑋𝑋

‖𝑌𝑌 − 𝐷𝐷𝑋𝑋‖22 , 𝑑𝑑. 𝑡𝑡.∀𝑖𝑖‖𝑥𝑥𝑖𝑖‖0 < 𝑇𝑇 (2) 

Where 𝑇𝑇 is the sparse constraint factor, ‖𝑥𝑥𝑖𝑖‖0 is the 𝑑𝑑0-norm 
counting the nonzero elements of vector 𝑥𝑥𝑖𝑖. 

II. METHODOLOGY

A. Preprocessing

The performance of classification is evaluated using QT 
database (QTDB) [10] which contains 3623, 3542, and 3176 
cardiologist’s annotations for QRS complexes, T waves, and 
P waves respectively. The QT database includes ECG 
signals which were chosen to represent a wide variety of 
QRS and ST-T morphologies and includes some records 
from MIT-BIH database. All records for this database are 
sampled at 250 Hz.  

For each ECG signal, we followed the cardiologist 
annotations available online with the database to segment 
the heartbeat cycles in order PQRST. Due to the heart-rate 
variability, the cycles’ durations are not the same in most 
cases. A time normalization is applied to each cycle taking 
the cycle with the longest duration as a reference.  Linear 
interpolation and zero-padding the cycle in frequency 
domain were tested to normalize the cycle length and both 
methods comes with the similar time alignment.  
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Fig.1 (a) Baseline drift corrected signal (Record sel30, lead ECG1). (b) After smoothing time normalization 

 
B. Dictionary Learning 
 

                                              
 

Fig.  2. ECG classification procedure with data-driven dictionary learning. 
 
Fig.2 shows the general procedure followed in this paper. 
ECG data segmentation can be done using any QRS peak 
detection algorithm. To avoid any auto-misdetection of 
ECG heartbeats, we used the cardiologists’ annotation 
points provided with the database to segment the ECG data 
into 𝑁𝑁 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 stack of cycles (each cycle starts 
with the atrial activity and ends with the ventricle activity). 
Beat-to-beat (RR) duration or sampling frequency related 
segments around the QRS peak can be utilized to achieve a 
complete heart cycle segmentation. Sequence of adjacent 
heartbeats might have different morphological changes and 
most probably have different lengths. Length normalization 
as shown in Fig. 1(b) is performed for each individual cycle 
as required by dictionary learning process.  
 
After normalization, a total of 6352 segments were 
extracted from the two leads QTDB. Since the segment 
duration related abnormality is neglected, we clustered the 
segmented data into normal and abnormal categories using 
three different approaches. Taking a reference normal 
cycle1 from the normal-sinus rhythm group as a reference 
and run cross-correlation between this reference cycle and 
the whole data cycles.  
Class 1: all the cycles that shows 60% match and higher 
considered as normal. The rest is abnormal. 
 
 

 

Class2: all the cycles that shows 80% match and higher 
considered as normal. The rest is abnormal. 
Class 3:cycles were checked one-by-one and clustered into 
normal and abnormal classes. 
The normalized cycles then partitioned into training and 
testing sets. 3fold cross validation assisted by k-mean 
clustering to insure that the training and testing data 
contains all types of ECG data. Table I below shows the 
data classes and data partitioning carried out in this work. 
 

TABLE 1   QTDB DATASET FOR TRAINING AND TESTING. 
. 

 Data 1 Data 2 

Normal  

Class 
1 

Train  780 908 
Test  390 454 

Class 
2 

Train  339 440 
Test  169 220 

Class3 
Train  NA 815 
Test NA 407 

Abnormal 

Class 
1 

Train  3455 3327 
Test  1727 1663 

Class 
2 

Train  3896 3795 
Test  1948 1897 

Class 
3 

Train  NA 3420 
Test NA 1710 
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Data 1 (1st category): raw ECG data with power-line and base-line 
noise filtered. 
Data 2 (2ndcategory): same as Data 1, filtered with fast moving 
average smoother. 
NA: Not-available  
 
C. Data-Driven Dictionary Learning 
 
Sparse Coding Stage:  

 
Used to find the sparse representation of input ECG cycle𝑦𝑦𝑖𝑖 , 
given the dictionary atoms𝐷𝐷 ∈ ℝ𝑛𝑛×𝐾𝐾, where 𝐷𝐷 initially is a 
normalized iid Gaussian entries. Among the sparse 
approximation methods reported in the literature, we 
selected the orthogonal matching pursuit (OMP) [11] due to 
its simplicity and ability to well represent the data-driven 
dictionaries [3]. OMP is an iterated based method dedicated 
to choose the best matching atom 𝑑𝑑𝑘𝑘 which satisfy the 
maximum inner product with 𝑦𝑦𝑖𝑖 . 
 
Dictionary Update Stage: 

 
Singular value decomposition (K-SVD) is one of the 
popular algorithms for constructing dictionaries by learning.  
The goal of K-SVD is to find the optimal dictionary atoms. 
Nevertheless, a set of parameters have to be adapted to 
achieve a strong dictionary. Given the initial dictionary and 
the sparse representation matrix 𝑋𝑋 created in sparse coding 
stage. In this paper, we followed the update procedure 
inspired by [12]. In which the dictionary atoms 𝑑𝑑𝑘𝑘 (column) 
were updated sequentially along with the corresponding 
sparse vector𝑥𝑥𝑘𝑘 (row) as follows, 
 

〈𝑑𝑑𝑘𝑘 , 𝑥𝑥𝑘𝑘〉 = arg min
𝑑𝑑𝑘𝑘 ,𝑥𝑥𝑘𝑘

𝑟𝑟𝑟𝑟𝑟𝑟‖𝐸𝐸−𝑘𝑘 − 𝑑𝑑𝑘𝑘𝑥𝑥𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟‖𝐹𝐹2  (3) 

 
Where the reconstruction error, 
 

𝐸𝐸−𝑘𝑘 = 𝑌𝑌 − 𝐷𝐷−𝑘𝑘𝑋𝑋−𝑘𝑘 (4) 

𝐷𝐷−𝑘𝑘is the dictionary with 𝑑𝑑𝑘𝑘 (atom/column) removed, 𝑋𝑋−𝑘𝑘is 
the sparse coefficients vector with 𝑥𝑥𝑘𝑘 (row) removed.  
 
Applying SVD decomposition on the error𝐸𝐸𝑘𝑘 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇, 
update the 𝑑𝑑𝑘𝑘 atom using the eigenvector 𝑈𝑈𝑖𝑖 with the largest 
eigenvalue. Then update the sparse coefficients vector 𝑥𝑥𝑘𝑘 by 
multiplying the first column of 𝑉𝑉 with the first value of𝑈𝑈 
(the largest singular value of𝐸𝐸). This updating procedure 
will lead to very few zero entries or non-sparse𝑋𝑋. To solve 
this sparsity problem, [13] suggests a method to handle 
every entry of 𝑥𝑥𝑘𝑘 independently updating only the non-zero 
entries to keep 𝑋𝑋 sparse. Another approach of updating 
dictionary atom 𝑑𝑑𝑘𝑘 is to update the sparsity of 𝑥𝑥𝑘𝑘 first using 
𝑑𝑑1 − 𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑 penalty, more details can be found in [12]. 
 
 
 
 
 

From (1), the K-SVD assumes, 
 

𝑥𝑥�𝑘𝑘 = 𝑑𝑑𝑘𝑘𝑇𝑇𝐸𝐸−𝑘𝑘 (5) 

 
Rather than using a fixed value 𝑑𝑑1 − 𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑 penalty, we 
suggest to adaptively set the penalty 𝛼𝛼 to 𝑥𝑥�𝑘𝑘scale initialized 
by SVD decomposition. 
 
Applying penalty 𝛼𝛼 on𝑥𝑥�𝑘𝑘, 
 

𝑥𝑥�𝑘𝑘𝛼𝛼 = �1          𝑑𝑑𝑖𝑖‖𝑥𝑥�𝑖𝑖‖ > 𝛼𝛼 ,    𝑑𝑑 = 1, … , 𝑘𝑘
0          𝑑𝑑𝑖𝑖‖𝑥𝑥�𝑖𝑖‖ < 𝛼𝛼 ,    𝑑𝑑 = 1, … , 𝑘𝑘 

 
The 𝑥𝑥𝑘𝑘 and 𝑑𝑑𝑘𝑘 update equations [12] are, 
 

𝑥𝑥𝑘𝑘 = 𝑑𝑑𝑠𝑠𝑑𝑑(𝑥𝑥�𝑘𝑘).  𝑥𝑥�𝑘𝑘𝛼𝛼 . �‖𝑥𝑥�𝑘𝑘‖ −
𝛼𝛼
2
� (6) 

 

𝑑𝑑𝑘𝑘 =
𝐸𝐸−𝑘𝑘𝑥𝑥𝑘𝑘𝑇𝑇

‖𝐸𝐸−𝑘𝑘𝑥𝑥𝑘𝑘𝑇𝑇‖2
 (7) 

 
III. EXPERIMENTAL RESULTS 

 
A.Dictionary Parameters 
 
During the stage of QTDB ECG cycles segmentation, we 
found that the cycle with longest duration has 284 samples. 
Note that the QTDB sampled at 250Hz. All cycles then 
normalized to the same length (284 sample). 
 
Fig.3(a).Depicts the impact of dictionary learning iterations 
used in this paper on the signal to noise ratio (SNR), root 
mean squared error (RMSE), and the sparsity.Only 60 
iteration were analyzed. For better results, more iterations 
should be done. With fixed complete dictionary size 
(K=284) it is obvious that when the iterations goes higher 
Fig. 3(a), it offsets by a decrease in the recovered ECG 
signal SNR. This decrease in SNR resulted from the noticed 
increase in the dictionary sparsity as in Fig. 3(c). Unlike 
Fig. 3(b),which shows rapid increase in recovered signal 
SNR as the dictionary size increases.  
 
Fig. 4 shows the simple error based classifier used in this 
work. Given a test data and dictionary 𝐷𝐷 
(normal/abnormal), the encoding process estimates the 
sparse coefficients using OMP method with initially pre-
determined sparse factor𝐿𝐿. In which 𝐿𝐿 determines the count 
of non-zero entries of 𝑋𝑋 in solving the approximation 
problem (2). Experimental results of selecting 𝐿𝐿 is shown in 
Fig. 3 (a, b, and c). 
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Fig.3 Normal and abnormal dictionaries performance on different set of training iterations 
 

 

 
 

Fig.4. ECG reconstruction error based classifier block diagram adopted from [13]. 
 
B. Classification 
 
The classification performance is assessed for its 
performance by calculating the Sensitivity 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁) 
and specificity𝑇𝑇𝑁𝑁/(𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇), where; TP - number of true 
positive detections (abnormal classified as abnormal), FN - 
number of false negative detections (abnormal classified as 
normal), FP - number of false positive detections (normal 
classified as abnormal), TN - number of true negative 
detections (normal classified as normal). In general, the 
sensitivity is the percentage of abnormal ECG cycles were 
correctly identified as abnormal. The specificity is the 
percentage of normal ECG cycles were correctly identified 
as normal. 

 
 

Fig.5 Classifier Average Performance. 
 

(a) 

 

(b) 

 

(c) 
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The dictionary based classifier performance was evaluated 
using 3-fold cross-validation with around 70% of the data as 
training and 30% as testing. As shown in Fig. 5, the overall 
sensitivity, specificity, and accuracy were determined by 
averaging the results of 18 different dictionary parameter 
settings. The results show that sensitivity in some cases was 
≈ 98%  and the specificity at best was 100%. Because of 
the trade-off between sensitivity and specificity, Table II 
depicts the best balanced performance combination which 
 

 
TABLE 2  CLASSIFICATION PERFORMANCE ON QTDB DATABASE. 

 
 Sensitivity Specificity Accuracy 

Class 1 91.78 95.13 92.40 

Class 2 92.09 94.67 92.30 

Class 3 84.68 83.39 84.41 

 
[14] has managed to detect and obtain twenty-points from 
the ST segment trained by support vector machine (SVM). 
The achieved average sensitivity of ischemic beat detection 
was 92.13% and [2] presented a patient-specific ECG 
heartbeats classifier assisted by Gini Index. A window of 61 
samples centered at QRS peak is used to train the 
dictionary. Average accuracy of test data sets was 84.5% for 
only 9 ECG records selected from MIT-BIH database 
 

IV. CONCLUSION 
 
A dictionary based heart-beat classifier is presented in this 
paper. The proposed method utilizes the whole heart-beat 
cycle an input without feature extraction/selection. The 
ECG data reconstruction error used as decision rule for the 
classifier. Dictionary learning based methods provides good 
accuracies for ECG data classification. The experimental 
results indicates that the classifier built by this dictionary 
framework provide an accuracy of 92.4%, 92.3%, and 
84.41% with class1, class2, and class3 data set respectively. 
The proposed dictionary learning algorithm has shown 
significant potential for further research that could provide 
for better accuracy of ECG data classification. 
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